Ultra-coarse grained cemented carbides are often used under conditions of concurrently applied stress and high temperature.Improvement of high-temperature mechanical performance of ultra-coarse grained cemented carbid...Ultra-coarse grained cemented carbides are often used under conditions of concurrently applied stress and high temperature.Improvement of high-temperature mechanical performance of ultra-coarse grained cemented carbides is highly desirable but still a big challenge.In this study,it is proposed that the hightemperature compression strength of ultra-coarse cemented carbides can be enhanced by modulating hard matrix grains by activated Ta C nanoparticles,through solid solution strengthening of Ta atoms.Based on the designed experiments and microstructural characterizations combined with finite element simulations,the grain morphology,stress distribution and dislocation configuration were studied in detail for ultra-coarse grained cemented carbides.The mechanisms of Ta dissolving in WC crystal and strengthening ultra-coarse grains through interaction with dislocations were disclosed from the atomic scale.This study opens a new perspective to modulate hard phases of cemented carbides for improving their hightemperature performance,which will be applicable to a variety of cermet and ceramic-based composite materials.展开更多
基金supported by the National Key Program of Research and Development(No.2018YFB0703902)the National Natural Science Foundation of China(Nos.51631002,51621003,52101003,52171061,U20A20236)。
文摘Ultra-coarse grained cemented carbides are often used under conditions of concurrently applied stress and high temperature.Improvement of high-temperature mechanical performance of ultra-coarse grained cemented carbides is highly desirable but still a big challenge.In this study,it is proposed that the hightemperature compression strength of ultra-coarse cemented carbides can be enhanced by modulating hard matrix grains by activated Ta C nanoparticles,through solid solution strengthening of Ta atoms.Based on the designed experiments and microstructural characterizations combined with finite element simulations,the grain morphology,stress distribution and dislocation configuration were studied in detail for ultra-coarse grained cemented carbides.The mechanisms of Ta dissolving in WC crystal and strengthening ultra-coarse grains through interaction with dislocations were disclosed from the atomic scale.This study opens a new perspective to modulate hard phases of cemented carbides for improving their hightemperature performance,which will be applicable to a variety of cermet and ceramic-based composite materials.