Hydrologic data derived from digital elevation models (DEM) has been regarded as an effective method in the spatial analysis of geographical information systems (GIS). However, both DEM resolution and terrain complexi...Hydrologic data derived from digital elevation models (DEM) has been regarded as an effective method in the spatial analysis of geographical information systems (GIS). However, both DEM resolution and terrain complexity has impacts on the accuracy of hydrologic derivatives. In this study, a multi-resolution and multi-relief comparative approach was used as a major methodology to investigate the accuracy of hydrologic data derived from DEMs. The experiment reveals that DEM terrain representation error affects the accuracy of DEM hydrological derivatives (drainage networks and watershed etc.). Coarser DEM resolutions can usually cause worse results. However, uncertain result commonly exists in this calculation. The derivative errors can be found closely related with DEM vertical resolution and terrain roughness. DEM vertical resolution can be found closely related with the accuracy of DEM hydrological derivatives, especially in the smooth plain area. If the mean slope is less than 4 degrees, the derived hydrologic data are usually unreliable. This result may be helpful in estimating the accuracy of the hydrologic derivatives and determining the DEM resolution that is appropriate to the accuracy requirement of a particular user. By applying a threshold value to subset the cells of a higher accumulation flow, a stream network of a specific network density can be extracted. Some very important geomorphologic characteristics, e.g., shallow and deep gullies, can be separately extracted by means of adjusting the threshold value. However, such a flow accumulation- based processing method can not correctly derive those streams that pass through the working area because it is hard to accumulate enough flow direction values to express the stream channels at the stream's entrance area. Consequently, errors will definitely occur at the stream抯 entrance area. In addition, erroneous derivatives can also be found in deriving some particular rivers, e.g., perched (hanging up) rivers, anastomosing rivers and braided rivers. Therefore, more work should be done to develop and perfect the algorithms.展开更多
基金National Natural Science Foundation of China No. 49971065 Open Research Fund Program of LIESMARS+3 种基金 No. WKL 99-0302 High-visiting Scholar Fund of the Key Laboratory of Continental Dynamics Ministry of Education China
文摘Hydrologic data derived from digital elevation models (DEM) has been regarded as an effective method in the spatial analysis of geographical information systems (GIS). However, both DEM resolution and terrain complexity has impacts on the accuracy of hydrologic derivatives. In this study, a multi-resolution and multi-relief comparative approach was used as a major methodology to investigate the accuracy of hydrologic data derived from DEMs. The experiment reveals that DEM terrain representation error affects the accuracy of DEM hydrological derivatives (drainage networks and watershed etc.). Coarser DEM resolutions can usually cause worse results. However, uncertain result commonly exists in this calculation. The derivative errors can be found closely related with DEM vertical resolution and terrain roughness. DEM vertical resolution can be found closely related with the accuracy of DEM hydrological derivatives, especially in the smooth plain area. If the mean slope is less than 4 degrees, the derived hydrologic data are usually unreliable. This result may be helpful in estimating the accuracy of the hydrologic derivatives and determining the DEM resolution that is appropriate to the accuracy requirement of a particular user. By applying a threshold value to subset the cells of a higher accumulation flow, a stream network of a specific network density can be extracted. Some very important geomorphologic characteristics, e.g., shallow and deep gullies, can be separately extracted by means of adjusting the threshold value. However, such a flow accumulation- based processing method can not correctly derive those streams that pass through the working area because it is hard to accumulate enough flow direction values to express the stream channels at the stream's entrance area. Consequently, errors will definitely occur at the stream抯 entrance area. In addition, erroneous derivatives can also be found in deriving some particular rivers, e.g., perched (hanging up) rivers, anastomosing rivers and braided rivers. Therefore, more work should be done to develop and perfect the algorithms.