Objective To investigate the biodegradation of tetrachloroethylene (PCE) using methanol as electron donor by acclimated anaerobic sludge. Methods HP-6890 gas chromatograph (GC), together with HP-7694 autosarnpler,...Objective To investigate the biodegradation of tetrachloroethylene (PCE) using methanol as electron donor by acclimated anaerobic sludge. Methods HP-6890 gas chromatograph (GC), together with HP-7694 autosarnpler, was used to analyze the concentration of PCE and intermediates. Results PCE could be decholrinated reductively to DCE via TCE, and probably further to VC and ethylene. The degradation of PCE and TCE conformed to first-order reaction kinetics. The reaction rate constants were 0.8991 d^-1 and 0.068 d^-1, respectively, and the corresponding half-life were 0.77 d and 10.19 d, respectively. TCE production rate constant was 0.1333 d^-1, showing that PCE was degraded more rapidly than TCE. Conclusion Methanol is an electron donor suitable for PCE degradation and the cometabolic electron donors are not limiting factors for PCE degradation.展开更多
Objective To investigate the biodegradation of tetrachloroethylene (PCE) by acclimated anaerobic sludge using different co-substrates, i.e., glucose, acetate, and lactate as electron donors. Methods HP-6890 gas chro...Objective To investigate the biodegradation of tetrachloroethylene (PCE) by acclimated anaerobic sludge using different co-substrates, i.e., glucose, acetate, and lactate as electron donors. Methods HP-6890 gas chromatograph (GC) in combination with auto-sampler was used to analyze the concentration of PCE and its intermediates, Results PCE could be degraded by reductive dechlorlnation and the degradation reaction conformed to the first-order kinetic equation. The rate constants are klaetate〉kglucose〉kacetate. The PCE degradation rate was the highest in the presence of lactate as an electron donor. Conclusion Lactate is the most suitable electron donor for PCE degradation and the electron donors supplied by co-metabolic substrates are not the limiting factors for PCE degradation,展开更多
基金This work was supported from the National Natural Science Foundation of China (No. 40102027 50578151) +1 种基金the Natural Science Foundation of Beijing (No. 8052017)The School-enterprise cooperation project of Beijing Municipal Education Commission (No.5190065005)
文摘Objective To investigate the biodegradation of tetrachloroethylene (PCE) using methanol as electron donor by acclimated anaerobic sludge. Methods HP-6890 gas chromatograph (GC), together with HP-7694 autosarnpler, was used to analyze the concentration of PCE and intermediates. Results PCE could be decholrinated reductively to DCE via TCE, and probably further to VC and ethylene. The degradation of PCE and TCE conformed to first-order reaction kinetics. The reaction rate constants were 0.8991 d^-1 and 0.068 d^-1, respectively, and the corresponding half-life were 0.77 d and 10.19 d, respectively. TCE production rate constant was 0.1333 d^-1, showing that PCE was degraded more rapidly than TCE. Conclusion Methanol is an electron donor suitable for PCE degradation and the cometabolic electron donors are not limiting factors for PCE degradation.
基金This work was supported by the National Science Foundation of China (Grant No. 40102027 50325824 50578151 and BeijingNatural Science Foundation 8052017).
文摘Objective To investigate the biodegradation of tetrachloroethylene (PCE) by acclimated anaerobic sludge using different co-substrates, i.e., glucose, acetate, and lactate as electron donors. Methods HP-6890 gas chromatograph (GC) in combination with auto-sampler was used to analyze the concentration of PCE and its intermediates, Results PCE could be degraded by reductive dechlorlnation and the degradation reaction conformed to the first-order kinetic equation. The rate constants are klaetate〉kglucose〉kacetate. The PCE degradation rate was the highest in the presence of lactate as an electron donor. Conclusion Lactate is the most suitable electron donor for PCE degradation and the electron donors supplied by co-metabolic substrates are not the limiting factors for PCE degradation,