期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Controllable fabrication of self-organized nano-multilayers in copper–carbon films 被引量:1
1
作者 Wei-Qi Wang Li Ji +3 位作者 Hong-Xuan Li Xiao-Hong Liu hui-di zhou Jian-Min Chen 《Chinese Physics B》 SCIE EI CAS CSCD 2019年第3期309-316,共8页
In order to clarify the influence of methane concentration and deposition time on self-organized nano-multilayers,three serial copper-carbon films have been prepared at various methane concentrations with different de... In order to clarify the influence of methane concentration and deposition time on self-organized nano-multilayers,three serial copper-carbon films have been prepared at various methane concentrations with different deposition times using a facile magnetron sputtering deposition system. The ratios of methane concentration(CH4/Ar+CH4) used in the experiments are 20%, 40%, and 60%, and the deposition times are 5 minutes, 20 minutes, and 40 minutes, respectively.Despite the difference in the growth conditions, self-organizing multilayered copper-carbon films are prepared at different deposition times by changing methane concentration. The film composition and microstructure are investigated by x-ray photoelectron spectroscopy(XPS), x-ray diffraction(XRD), field emission scanning electron microscopy(FESEM), and high-resolution transmission electron microscopy(HRTEM). By comparing the composition and microstructure of three serial films, the optimal growth conditions and compositions for self-organizing nano-multilayers in copper-carbon film are acquired. The results demonstrate that the self-organized nano-multilayered structure prefers to form in two conditions during the deposition process. One is that the methane should be curbed at low concentration for long deposition time,and the other condition is that the methane should be controlled at high concentration for short deposition time. In particular, nano-multilayered structure is self-organized in the copper-carbon film with copper concentration of 10-25 at.%.Furthermore, an interesting microstructure transition phenomenon is observed in copper-carbon films, that is, the nanomultilayered structure is gradually replaced by a nano-composite structure with deposition time and finally covered by amorphous carbon. 展开更多
关键词 nano-multilayers SELF-ORGANIZED CONTROLLABLE FABRICATION copper–carbon FILMS
下载PDF
Vacuum current-carrying tribological behavior of MoS2-Ti films with different conductivities
2
作者 Lu-Lu Pei Peng-Fei Ju +4 位作者 Li Ji Hong-Xuan Li Xiao-Hong Liu hui-di zhou Jian-Min Chen 《Chinese Physics B》 SCIE EI CAS CSCD 2022年第6期563-571,共9页
Current-carrying sliding is widely applied in aerospace equipment,but it is limited by the poor lubricity of the present materials and the unclear tribological mechanism.This study demonstrated the potential of MoS_(2... Current-carrying sliding is widely applied in aerospace equipment,but it is limited by the poor lubricity of the present materials and the unclear tribological mechanism.This study demonstrated the potential of MoS_(2)-based materials with excellent lubricity as space sliding electrical contact materials by doping Ti to improve its conductivity.The tribological behavior of MoS_(2)-Ti films under current-carrying sliding in vacuum was studied by establishing a simulation evaluating device.Moreover,the noncurrent-carrying sliding and static current-carrying experiments in vacuum were carried out for comparison to understand the tribological mechanism.In addition to mechanical wear,the current-induced arc erosion and thermal effect take important roles in accelerating the wear.Arc erosion is caused by the accumulation of electric charge,which is related to the conductivity of the film.While the current-thermal effect softens the film,causing strong adhesive wear,and good conductivity and the large contact area are beneficial for minimizing the thermal effect.So the moderate hardness and good conductivity of MoS_(2)-Ti film contribute to its excellent current-carrying tribological behavior in vacuum,showing a significant advantage compared with the traditional ones. 展开更多
关键词 MoS2-Ti films CONDUCTIVITY current-carrying tribological behavior VACUUM
下载PDF
基于不同杨氏模量的聚氨酯基防结冰涂层的制备及研究
3
作者 宋伟 李凤英 +3 位作者 张定军 陈磊 周惠娣 陈建敏 《高分子学报》 SCIE CAS CSCD 北大核心 2024年第8期1033-1043,共11页
以4,4'-二苯基甲烷二异氰酸酯(MDI)、聚四氢呋喃醚二醇(PTMEG)为原料,通过改变R值,获得了不同杨氏模量(0.72~5.95 MPa)的单组份湿固化型聚氨酯弹性体(PUE)涂层,用不同分子量聚醚二元醇进行对比,探究涂层杨氏模量对冰黏附强度的影响... 以4,4'-二苯基甲烷二异氰酸酯(MDI)、聚四氢呋喃醚二醇(PTMEG)为原料,通过改变R值,获得了不同杨氏模量(0.72~5.95 MPa)的单组份湿固化型聚氨酯弹性体(PUE)涂层,用不同分子量聚醚二元醇进行对比,探究涂层杨氏模量对冰黏附强度的影响.结果发现,较高分子量聚醚二元醇系列具有较低冰黏附强度(平均57.71 kPa),随涂层杨氏模量增大,对应冰黏附强度呈先增大后减小趋势.分析表明,低杨氏模量涂层(如PTMEG-1000作软段时,1.05~2.96 MPa)在水结冰膨胀过程中,涂层表面易产生变形,形成凹凸不平结构,提供更多黏附点供冰结构黏附,使得冰黏附强度与表面能密切相关,造成冰黏附强度增大的可能性.而较高杨氏模量涂层(如PTMEG-1000作软段时,2.96~5.95 MPa)存在冰黏附强度的降低区间不符合杨氏模量与冰黏附强度的正相关关系,这是因为受低温回弹力作用,冰与涂层产生弹性失配,诱发产生微裂纹使得冰-涂层界面空化,造成冰黏附强度减小的可能性.因此,合理利用涂层杨氏模量对冰黏附强度的影响机制可以有效降低冰黏附强度. 展开更多
关键词 聚氨酯弹性体 杨氏模量 冰黏附强度 机械性能
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部