AIM: To investigate the effectiveness of endoscopic submucosal dissection (ESD) and endoscopic mucosal resection (EMR) in treating superficial esophageal cancer (SEC).
Developing new functional explosives that display high stability,good energy performance,and low sensitivity are one of the key directions of energetic materials research.In this work,two-dimensional(2D)Schiff-based e...Developing new functional explosives that display high stability,good energy performance,and low sensitivity are one of the key directions of energetic materials research.In this work,two-dimensional(2D)Schiff-based energetic covalent organic frameworks(COFs)are prepared based on triaminoguanidine salts with different anions as building blocks.Benefiting from the robust covalent bond in 2D extended polygons and strongπ-πinteractions in the eclipsed interlayers,the synthesized energetic COFs showed higher thermal stability and lower mechanical sensitivity than their precursor salts.More importantly,incorporating triaminoguanidine salts into COFs effectively increase the corrosion resistance to metal under high humidity conditions,which is due to the imine moieties in COFs functioning asπacceptors and offering strong bonding with metallic ions.This work provides a new pathway for the development of high-performance energetic materials.展开更多
The brown planthopper (BPH, Nilaparvata lugens) is a destructive, monophagous, piercing-sucking insect pest of rice. Previous studies indicated that jasmonic acid (JA) positively regulates rice defense against che...The brown planthopper (BPH, Nilaparvata lugens) is a destructive, monophagous, piercing-sucking insect pest of rice. Previous studies indicated that jasmonic acid (JA) positively regulates rice defense against chewing insect pests but negatively regulates it against the piercing-sucking insect of BPH. We here demonstrated that overexpression of allene oxide cyclase (AOC) but not OPR3 (cis-12-oxo-phytodienoic acid (OPDA) reductase 3, an enzyme adjacent to AOC in the JA synthetic pathway) significantly increased rice resistance to BPH, mainly by reducing the feeding activity and survival rate. Further anal- ysis revealed that plant response to BPH under AOC overexpression was independent of the JA pathway and that significantly higher OPDA levels stimulated rice resistance to BPH. Microarray analysis identified multiple candidate resistance-related genes underAOCoverexpression. OPDA treatment stimulated the resistance of radish seedlings to green peach aphid Myzus persicae, another piercing-sucking insect. These results imply that rice resistance to chewing insects and to sucking insects can be enhanced simultaneously through AOC-mediated increases of JA and OPDA and provide direct evidence of the potential application of OPDA in stimulating plant defense responses to piercing-sucking insect pests in agriculture.展开更多
文摘AIM: To investigate the effectiveness of endoscopic submucosal dissection (ESD) and endoscopic mucosal resection (EMR) in treating superficial esophageal cancer (SEC).
基金supported the National Natural Science Foundation of China(Nos.22175155,21825106 and 22275168)the Henan Science Fund for Excellent Young Scholars(No.212300410084)the opening project of State Key Laboratory of Explosion Science and Technology(Beijing Institute of Technology)(No.KFJJ22–05 M)。
文摘Developing new functional explosives that display high stability,good energy performance,and low sensitivity are one of the key directions of energetic materials research.In this work,two-dimensional(2D)Schiff-based energetic covalent organic frameworks(COFs)are prepared based on triaminoguanidine salts with different anions as building blocks.Benefiting from the robust covalent bond in 2D extended polygons and strongπ-πinteractions in the eclipsed interlayers,the synthesized energetic COFs showed higher thermal stability and lower mechanical sensitivity than their precursor salts.More importantly,incorporating triaminoguanidine salts into COFs effectively increase the corrosion resistance to metal under high humidity conditions,which is due to the imine moieties in COFs functioning asπacceptors and offering strong bonding with metallic ions.This work provides a new pathway for the development of high-performance energetic materials.
基金This study was supported by the National Basic Research Program of China (2010CB126200) and the National Natural Science Foundation of China (31371949).
文摘The brown planthopper (BPH, Nilaparvata lugens) is a destructive, monophagous, piercing-sucking insect pest of rice. Previous studies indicated that jasmonic acid (JA) positively regulates rice defense against chewing insect pests but negatively regulates it against the piercing-sucking insect of BPH. We here demonstrated that overexpression of allene oxide cyclase (AOC) but not OPR3 (cis-12-oxo-phytodienoic acid (OPDA) reductase 3, an enzyme adjacent to AOC in the JA synthetic pathway) significantly increased rice resistance to BPH, mainly by reducing the feeding activity and survival rate. Further anal- ysis revealed that plant response to BPH under AOC overexpression was independent of the JA pathway and that significantly higher OPDA levels stimulated rice resistance to BPH. Microarray analysis identified multiple candidate resistance-related genes underAOCoverexpression. OPDA treatment stimulated the resistance of radish seedlings to green peach aphid Myzus persicae, another piercing-sucking insect. These results imply that rice resistance to chewing insects and to sucking insects can be enhanced simultaneously through AOC-mediated increases of JA and OPDA and provide direct evidence of the potential application of OPDA in stimulating plant defense responses to piercing-sucking insect pests in agriculture.