BACKGROUND Barrett’s esophagus(BE),which has increased in prevalence worldwide,is a precursor for esophageal adenocarcinoma.Although there is a gap in the detection rates between endoscopic BE and histological BE in ...BACKGROUND Barrett’s esophagus(BE),which has increased in prevalence worldwide,is a precursor for esophageal adenocarcinoma.Although there is a gap in the detection rates between endoscopic BE and histological BE in current research,we trained our artificial intelligence(AI)system with images of endoscopic BE and tested the system with images of histological BE.AIM To assess whether an AI system can aid in the detection of BE in our setting.METHODS Endoscopic narrow-band imaging(NBI)was collected from Chung Shan Medical University Hospital and Changhua Christian Hospital,resulting in 724 cases,with 86 patients having pathological results.Three senior endoscopists,who were instructing physicians of the Digestive Endoscopy Society of Taiwan,independently annotated the images in the development set to determine whether each image was classified as an endoscopic BE.The test set consisted of 160 endoscopic images of 86 cases with histological results.RESULTS Six pre-trained models were compared,and EfficientNetV2B2(accuracy[ACC]:0.8)was selected as the backbone architecture for further evaluation due to better ACC results.In the final test,the AI system correctly identified 66 of 70 cases of BE and 85 of 90 cases without BE,resulting in an ACC of 94.37%.CONCLUSION Our AI system,which was trained by NBI of endoscopic BE,can adequately predict endoscopic images of histological BE.The ACC,sensitivity,and specificity are 94.37%,94.29%,and 94.44%,respectively.展开更多
文摘BACKGROUND Barrett’s esophagus(BE),which has increased in prevalence worldwide,is a precursor for esophageal adenocarcinoma.Although there is a gap in the detection rates between endoscopic BE and histological BE in current research,we trained our artificial intelligence(AI)system with images of endoscopic BE and tested the system with images of histological BE.AIM To assess whether an AI system can aid in the detection of BE in our setting.METHODS Endoscopic narrow-band imaging(NBI)was collected from Chung Shan Medical University Hospital and Changhua Christian Hospital,resulting in 724 cases,with 86 patients having pathological results.Three senior endoscopists,who were instructing physicians of the Digestive Endoscopy Society of Taiwan,independently annotated the images in the development set to determine whether each image was classified as an endoscopic BE.The test set consisted of 160 endoscopic images of 86 cases with histological results.RESULTS Six pre-trained models were compared,and EfficientNetV2B2(accuracy[ACC]:0.8)was selected as the backbone architecture for further evaluation due to better ACC results.In the final test,the AI system correctly identified 66 of 70 cases of BE and 85 of 90 cases without BE,resulting in an ACC of 94.37%.CONCLUSION Our AI system,which was trained by NBI of endoscopic BE,can adequately predict endoscopic images of histological BE.The ACC,sensitivity,and specificity are 94.37%,94.29%,and 94.44%,respectively.