A novel fluorinated triblock copolymer incorporating 2-ethylhexyl methacrylate (EHMA), tert-butyl methacrylate (tBMA) and 1H,1H,2H,2H-perfluorodecyl acrylate (FA) (PEHMA-b-PtBMA-b-PFA) was first synthesized us...A novel fluorinated triblock copolymer incorporating 2-ethylhexyl methacrylate (EHMA), tert-butyl methacrylate (tBMA) and 1H,1H,2H,2H-perfluorodecyl acrylate (FA) (PEHMA-b-PtBMA-b-PFA) was first synthesized using three successive reversible addition fragmentation chain transfer (RAFT) polymerization and the subsequent hydrolyzing at acidic condition. The as-fabricated triblock copolymer exhibited an interesting morphology evolution from the multi-compartment rod-like structure to spherical structure along with the addition of a selective solution. At the same time, a visible phase separation domain could be seen in the core area due to the existence of fluorocarbon segments. Furthermore, the self- assembly behavior of the triphilic copolymer at different pH was also verified by transmission electron microscopy, as well as the dynamic light scattering. These stimuli-responsive multi-compartment nanostructures may have potential applications in drug delivery.展开更多
基金financially supported by the National Natural Science Foundation of China(Nos.51622301 and 51573046)Fundamental Research Funds for the Central Universities(Nos.B14018,WD1616010 and 222201717001)
文摘A novel fluorinated triblock copolymer incorporating 2-ethylhexyl methacrylate (EHMA), tert-butyl methacrylate (tBMA) and 1H,1H,2H,2H-perfluorodecyl acrylate (FA) (PEHMA-b-PtBMA-b-PFA) was first synthesized using three successive reversible addition fragmentation chain transfer (RAFT) polymerization and the subsequent hydrolyzing at acidic condition. The as-fabricated triblock copolymer exhibited an interesting morphology evolution from the multi-compartment rod-like structure to spherical structure along with the addition of a selective solution. At the same time, a visible phase separation domain could be seen in the core area due to the existence of fluorocarbon segments. Furthermore, the self- assembly behavior of the triphilic copolymer at different pH was also verified by transmission electron microscopy, as well as the dynamic light scattering. These stimuli-responsive multi-compartment nanostructures may have potential applications in drug delivery.