期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Deferoxamine promotes recovery of traumatic spinal cord injury by inhibiting ferroptosis 被引量:48
1
作者 Xue Yao Yan Zhang +12 位作者 Jian Hao hui-quan duan Chen-Xi Zhao Chao Sun Bo Li Bao-You Fan Xu Wang Wen-Xiang Li Xuan-Hao Fu Yong Hu Chang Liu Xiao-Hong Kong Shi-Qing Feng 《Neural Regeneration Research》 SCIE CAS CSCD 2019年第3期532-541,共10页
Ferroptosis is an iron-dependent novel cell death pathway. Deferoxamine, a ferroptosis inhibitor, has been reported to promote spinal cord injury repair. It has yet to be clarified whether ferroptosis inhibition repre... Ferroptosis is an iron-dependent novel cell death pathway. Deferoxamine, a ferroptosis inhibitor, has been reported to promote spinal cord injury repair. It has yet to be clarified whether ferroptosis inhibition represents the mechanism of action of Deferoxamine on spinal cord injury recovery. A rat model of Deferoxamine at thoracic 10 segment was established using a modified Allen's method. Ninety 8-week-old female Wistar rats were used. Rats in the Deferoxamine group were intraperitoneally injected with 100 mg/kg Deferoxamine 30 minutes before injury. Simultaneously, the Sham and Deferoxamine groups served as controls. Drug administration was conducted for 7 consecutive days. The results were as follows:(1) Electron microscopy revealed shrunken mitochondria in the spinal cord injury group.(2) The Basso, Beattie and Bresnahan locomotor rating score showed that recovery of the hindlimb was remarkably better in the Deferoxamine group than in the spinal cord injury group.(3) The iron concentration was lower in the Deferoxamine group than in the spinal cord injury group after injury.(4) Western blot assay revealed that, compared with the spinal cord injury group, GPX4, xCT, and glutathione expression was markedly increased in the Deferoxamine group.(5) Real-time polymerase chain reaction revealed that, compared with the Deferoxamine group, mRNA levels of ferroptosis-related genes Acyl-CoA synthetase family member 2(ACSF2) and iron-responsive element-binding protein 2(IREB2) were up-regulated in the Deferoxamine group.(6) Deferoxamine increased survival of neurons and inhibited gliosis. These findings confirm that Deferoxamine can repair spinal cord injury by inhibiting ferroptosis. Targeting ferroptosis is therefore a promising therapeutic approach for spinal cord injury. 展开更多
关键词 nerve REGENERATION iron spinal CORD INJURY secondary INJURY ferroptosis DEFEROXAMINE GPX4 xCT treatment ASTROGLIOSIS lipid PEROXIDATION neural REGENERATION
下载PDF
Mechanisms underlying the promotion of functional recovery by deferoxamine after spinal cord injury in rats 被引量:9
2
作者 Jian Hao Bo Li +8 位作者 hui-quan duan Chen-xi Zhao Yan Zhang Chao Sun Bin Pan Chang Liu Xiao-hong Kong Xue Yao Shi-qing Feng 《Neural Regeneration Research》 SCIE CAS CSCD 2017年第6期959-968,共10页
Deferoxamine, a clinically safe drug used for treating iron overload, also repairs spinal cord injury although the mechanism for this action remains unknown. Here, we determined whether deferoxamine was therapeutic in... Deferoxamine, a clinically safe drug used for treating iron overload, also repairs spinal cord injury although the mechanism for this action remains unknown. Here, we determined whether deferoxamine was therapeutic in a rat model of spinal cord injury and explored potential mechanisms for this effect. Spinal cord injury was induced by impacting the spinal cord at the thoracic T10 vertebra level. One group of injured rats received deferoxamine, a second injured group received saline, and a third group was sham operated. Both 2 days and 2 weeks after spinal cord injury, total iron ion levels and protein expression levels of the proinflammatory cytokines tumor necrosis factor-α and interleukin-1β and the pro-apoptotic protein caspase-3 in the spinal cords of the injured deferoxamine-treated rats were significantly lower than those in the injured saline-treated group. The percentage of the area positive for glial fibrillary acidic protein immunoreactivity and the number of terminal deoxynucleotidyl transferase d UTP nick end labeling-positive cells were also significantly decreased both 2 days and 2 weeks post injury, while the number of Neu N-positive cells and the percentage of the area positive for the oligodendrocyte marker CNPase were increased in the injured deferoxamine-treated rats. At 14–56 days post injury, hind limb motor function in the deferoxamine-treated rats was superior to that in the saline-treated rats. These results suggest that deferoxamine decreases total iron ion, tumor necrosis factor-α, interleukin-1β, and caspase-3 expression levels after spinal cord injury and inhibits apoptosis and glial scar formation to promote motor function recovery. 展开更多
关键词 injured interleukin glial caspase saline underlying fibrillary minutes acidic neuronal
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部