Background:Acupuncture for stroke has been endorsed by the World Health Organization,and the Chinese Guidelines for the Diagnosis and Treatment of Acute Ischemic Stroke 2018 lists acupuncture for stroke as a Level II ...Background:Acupuncture for stroke has been endorsed by the World Health Organization,and the Chinese Guidelines for the Diagnosis and Treatment of Acute Ischemic Stroke 2018 lists acupuncture for stroke as a Level II recommendation with Level B evidence.The efficacy of acupuncture in the treatment of acute ischaemic stroke needs to be approved by more high-quality studies.However,there are currently no real-world studies of acupuncture for stroke.Methods:Stroke patients who meet the study criteria and are hospitalized from February 2021 to March 2022 in 23 medical institutions across China,including the First Teaching Hospital of Tianjin University of Chinese Medicine.The number of patients planned to be recruited is 3,000.Due to the impact of COVID-19,we have applied to the competent authorities for an extension(recruit patients until December 2022).Basic patient information and treatment information will be registered at admission,at discharge,and on the following dates after the onset of the disease:90±7 days,180±7 days,and 360±7 days after the onset of the disease.Establish a database for statistical analysis.Discussion:This study proposes to conduct a prospective cohort study of acupuncture intervention for stroke in a real-world medical setting.Analysis of the effect pattern of acupuncture intervention on the recovery of neurological function system and swallowing disorder in stroke patients.Evaluate the long-term effects of acupuncture intervention for stroke and recurrence of cardiovascular and cerebrovascular events.展开更多
BACKGROUND Synaptophysin plays a key role in synaptic development and plasticity of neurons and is closely related to the cognitive process of Alzheimer’s disease(AD)patients.Exogenous neural stem cells(NSCs)improve ...BACKGROUND Synaptophysin plays a key role in synaptic development and plasticity of neurons and is closely related to the cognitive process of Alzheimer’s disease(AD)patients.Exogenous neural stem cells(NSCs)improve the damaged nerve function.The effects of Sanjiao acupuncture on cognitive impairment may be related to the regulation of the NSC microenvironment.AIM To explore the anti-dementia mechanism of acupuncture by regulating the NSC microenvironment.METHODS NSCs were isolated from pregnant senescence-accelerated mouse resistant 1(SAMR1)mice,labeled with BrdU,and injected into the hippocampus of senescence-accelerated mouse prone 8(SAMP8)mice.Eight-month-old senescence-accelerated mice(SAM)were randomly divided into six groups:SAMR1(RC),SAMP8(PC),sham transplantation(PS),NSC transplantation(PT),NSC transplantation with acupuncture(PTA),and NSC transplantation with nonacupoint acupuncture(PTN).Morris water maze test was used to study the learning and memory ability of mice after NSC transplantation.Hematoxylin-eosin staining and immunofluorescence were used to observe the histopathological changes and NSC proliferation in mice.A co-culture model of hippocampal slices and NSCs was established in vitro,and the synaptophysin expression in the hippocampal microenvironment of mice was observed by flow cytometry after acupuncture treatment.RESULTS Morris water maze test showed significant cognitive impairment of learning and memory in 8-mo-old SAMP8,which improved in all the NSC transplantation groups.The behavioral change in the PTA group was stronger than those in the other two groups(P<0.05).Histopathologically,the hippocampal structure was clear,the cell arrangement was dense and orderly,and the necrosis of cells in CA1 and CA3 areas was significantly reduced in the PTA group when compared with the PC group.The BrdU-positive proliferating cells were found in NSC hippocampal transplantation groups,and the number increased significantly in the PTA group than in the PT and PTN groups(P<0.05).Flow cytometry showed that after co-culture of NSCs with hippocampal slices in vitro,the synaptophysin expression in the PC group decreased in comparison to the RC group,that in PT,PTA,and PTN groups increased as compared to the PC group,and that in the PTA group increased significantly as compared to the PTN group with acupointrelated specificity(P<0.05).CONCLUSION Acupuncture may promote nerve regeneration and synaptogenesis in SAMP8 mice by regulating the microenvironment of NSC transplantation to improve the nerve activity and promote the recovery of AD-damaged cells.展开更多
Sanjiao acupuncture and HuangDiSan can promote the proliferation, migration and differentiation of exogenous neural stem cells in senescence-accelerated mouse prone 8 (SAMP8) mice and can improve learning and memory...Sanjiao acupuncture and HuangDiSan can promote the proliferation, migration and differentiation of exogenous neural stem cells in senescence-accelerated mouse prone 8 (SAMP8) mice and can improve learning and memory impairment and behavioral function in dementia-model mice. Thus, we sought to determine whether Sanjiao acupuncture and HuangDiSan can elevate the effect of neural stem cell transplantation in Alzheimer’s disease model mice. Sanjiao acupuncture was used to stimulate Danzhong (CV17), Zhongwan (CV12),Qihai (CV6), bilateral Xuehai (SP10) and bilateral Zusanli (ST36) 15 days before and after implantation of neural stem cells (5 × 10^5) into the hippocampal dentate gyrus of SAMP8 mice. Simultaneously, 0.2 mL HuangDiSan, containing Rehmannia Root and Chinese Angelica,was intragastrically administered. Our results demonstrated that compared with mice undergoing neural stem cell transplantation alone,learning ability was significantly improved and synaptophysin mRNA and protein levels were greatly increased in the hippocampus of mice undergoing both Sanjiao acupuncture and intragastric administration of HuangDiSan. We conclude that the combination of Sanjiao acupuncture and HuangDiSan can effectively improve dementia symptoms in mice, and the mechanism of this action might be related to the regulation of synaptophysin expression.展开更多
Brain diseases, including brain tumors, neurodegenerative disorders, cerebrovasculardiseases, and traumatic brain injuries, are among the major disordersinfluencing human health, currently with no effective therapy. D...Brain diseases, including brain tumors, neurodegenerative disorders, cerebrovasculardiseases, and traumatic brain injuries, are among the major disordersinfluencing human health, currently with no effective therapy. Due to the lowregeneration capacity of neurons, insufficient secretion of neurotrophic factors,and the aggravation of ischemia and hypoxia after nerve injury, irreversible lossof functional neurons and nerve tissue damage occurs. This damage is difficult torepair and regenerate the central nervous system after injury. Neural stem cells(NSCs) are pluripotent stem cells that only exist in the central nervous system.They have good self-renewal potential and ability to differentiate into neurons,astrocytes, and oligodendrocytes and improve the cellular microenvironment.NSC transplantation approaches have been made for various neurodegenerativedisorders based on their regenerative potential. This review summarizes anddiscusses the characteristics of NSCs, and the advantages and effects of NSCs inthe treatment of brain diseases and limitations of NSC transplantation that need tobe addressed for the treatment of brain diseases in the future.展开更多
基金supported by the Tianjin Municipal Science and Technology Bureau.Grant number(No.20ZYJDSY00020).
文摘Background:Acupuncture for stroke has been endorsed by the World Health Organization,and the Chinese Guidelines for the Diagnosis and Treatment of Acute Ischemic Stroke 2018 lists acupuncture for stroke as a Level II recommendation with Level B evidence.The efficacy of acupuncture in the treatment of acute ischaemic stroke needs to be approved by more high-quality studies.However,there are currently no real-world studies of acupuncture for stroke.Methods:Stroke patients who meet the study criteria and are hospitalized from February 2021 to March 2022 in 23 medical institutions across China,including the First Teaching Hospital of Tianjin University of Chinese Medicine.The number of patients planned to be recruited is 3,000.Due to the impact of COVID-19,we have applied to the competent authorities for an extension(recruit patients until December 2022).Basic patient information and treatment information will be registered at admission,at discharge,and on the following dates after the onset of the disease:90±7 days,180±7 days,and 360±7 days after the onset of the disease.Establish a database for statistical analysis.Discussion:This study proposes to conduct a prospective cohort study of acupuncture intervention for stroke in a real-world medical setting.Analysis of the effect pattern of acupuncture intervention on the recovery of neurological function system and swallowing disorder in stroke patients.Evaluate the long-term effects of acupuncture intervention for stroke and recurrence of cardiovascular and cerebrovascular events.
基金Supported by National Natural Science Foundation of China,No.81202740and Tianjin Natural Science Fund,No.17JCYBJC26200。
文摘BACKGROUND Synaptophysin plays a key role in synaptic development and plasticity of neurons and is closely related to the cognitive process of Alzheimer’s disease(AD)patients.Exogenous neural stem cells(NSCs)improve the damaged nerve function.The effects of Sanjiao acupuncture on cognitive impairment may be related to the regulation of the NSC microenvironment.AIM To explore the anti-dementia mechanism of acupuncture by regulating the NSC microenvironment.METHODS NSCs were isolated from pregnant senescence-accelerated mouse resistant 1(SAMR1)mice,labeled with BrdU,and injected into the hippocampus of senescence-accelerated mouse prone 8(SAMP8)mice.Eight-month-old senescence-accelerated mice(SAM)were randomly divided into six groups:SAMR1(RC),SAMP8(PC),sham transplantation(PS),NSC transplantation(PT),NSC transplantation with acupuncture(PTA),and NSC transplantation with nonacupoint acupuncture(PTN).Morris water maze test was used to study the learning and memory ability of mice after NSC transplantation.Hematoxylin-eosin staining and immunofluorescence were used to observe the histopathological changes and NSC proliferation in mice.A co-culture model of hippocampal slices and NSCs was established in vitro,and the synaptophysin expression in the hippocampal microenvironment of mice was observed by flow cytometry after acupuncture treatment.RESULTS Morris water maze test showed significant cognitive impairment of learning and memory in 8-mo-old SAMP8,which improved in all the NSC transplantation groups.The behavioral change in the PTA group was stronger than those in the other two groups(P<0.05).Histopathologically,the hippocampal structure was clear,the cell arrangement was dense and orderly,and the necrosis of cells in CA1 and CA3 areas was significantly reduced in the PTA group when compared with the PC group.The BrdU-positive proliferating cells were found in NSC hippocampal transplantation groups,and the number increased significantly in the PTA group than in the PT and PTN groups(P<0.05).Flow cytometry showed that after co-culture of NSCs with hippocampal slices in vitro,the synaptophysin expression in the PC group decreased in comparison to the RC group,that in PT,PTA,and PTN groups increased as compared to the PC group,and that in the PTA group increased significantly as compared to the PTN group with acupointrelated specificity(P<0.05).CONCLUSION Acupuncture may promote nerve regeneration and synaptogenesis in SAMP8 mice by regulating the microenvironment of NSC transplantation to improve the nerve activity and promote the recovery of AD-damaged cells.
基金supported by the National Natural Science Foundation of China,No.81202740 and 81603686the Natural Science Foundation of Tianjin of China,No.17JCYBJC26200 and 12JCQNJC07400+1 种基金the Public Health Bureau Science and Technology Foundation of Tianjin of China,No.2014KY15the Specialized Research Foundation for the Doctoral Program of Higher Education,No.20121210120002
文摘Sanjiao acupuncture and HuangDiSan can promote the proliferation, migration and differentiation of exogenous neural stem cells in senescence-accelerated mouse prone 8 (SAMP8) mice and can improve learning and memory impairment and behavioral function in dementia-model mice. Thus, we sought to determine whether Sanjiao acupuncture and HuangDiSan can elevate the effect of neural stem cell transplantation in Alzheimer’s disease model mice. Sanjiao acupuncture was used to stimulate Danzhong (CV17), Zhongwan (CV12),Qihai (CV6), bilateral Xuehai (SP10) and bilateral Zusanli (ST36) 15 days before and after implantation of neural stem cells (5 × 10^5) into the hippocampal dentate gyrus of SAMP8 mice. Simultaneously, 0.2 mL HuangDiSan, containing Rehmannia Root and Chinese Angelica,was intragastrically administered. Our results demonstrated that compared with mice undergoing neural stem cell transplantation alone,learning ability was significantly improved and synaptophysin mRNA and protein levels were greatly increased in the hippocampus of mice undergoing both Sanjiao acupuncture and intragastric administration of HuangDiSan. We conclude that the combination of Sanjiao acupuncture and HuangDiSan can effectively improve dementia symptoms in mice, and the mechanism of this action might be related to the regulation of synaptophysin expression.
文摘Brain diseases, including brain tumors, neurodegenerative disorders, cerebrovasculardiseases, and traumatic brain injuries, are among the major disordersinfluencing human health, currently with no effective therapy. Due to the lowregeneration capacity of neurons, insufficient secretion of neurotrophic factors,and the aggravation of ischemia and hypoxia after nerve injury, irreversible lossof functional neurons and nerve tissue damage occurs. This damage is difficult torepair and regenerate the central nervous system after injury. Neural stem cells(NSCs) are pluripotent stem cells that only exist in the central nervous system.They have good self-renewal potential and ability to differentiate into neurons,astrocytes, and oligodendrocytes and improve the cellular microenvironment.NSC transplantation approaches have been made for various neurodegenerativedisorders based on their regenerative potential. This review summarizes anddiscusses the characteristics of NSCs, and the advantages and effects of NSCs inthe treatment of brain diseases and limitations of NSC transplantation that need tobe addressed for the treatment of brain diseases in the future.