Understanding the processes of protein adsorption/desorption on nanopartieles' surfaces is important for the development of new nanotechnology involving biomaterials; however, an atomistic resolution picture for thes...Understanding the processes of protein adsorption/desorption on nanopartieles' surfaces is important for the development of new nanotechnology involving biomaterials; however, an atomistic resolution picture for these processes and for the simultaneous protein conformational change is missing. Here, we report the adsorption of protein GB 1 on a polystyrene nanoparticle surface using atomistic molecular dynamic simulations. Enabled by metadynamics, we explored the relevant phase space and identified three protein states, each involving both the adsorbed and desorbed modes. We also studied the change of the secondary and tertiary structures of GB 1 during adsorption and the dominant interactions between the protein and surface in different adsorption stages. The results we obtained from simulation were found to be more adequate and complete than the previous one. We believe the model presented in this paper, in comparison with the previous ones, is a better theoretical model to understand and explain the experimental results.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.11774158,11274157,31671026,and 11334004)the National Basic Research and Development Program of China(Grant No.2013CB834100)Priority Academic Program Development(PAPD)Project of Jiangsu Higher Education Institutions
文摘Understanding the processes of protein adsorption/desorption on nanopartieles' surfaces is important for the development of new nanotechnology involving biomaterials; however, an atomistic resolution picture for these processes and for the simultaneous protein conformational change is missing. Here, we report the adsorption of protein GB 1 on a polystyrene nanoparticle surface using atomistic molecular dynamic simulations. Enabled by metadynamics, we explored the relevant phase space and identified three protein states, each involving both the adsorbed and desorbed modes. We also studied the change of the secondary and tertiary structures of GB 1 during adsorption and the dominant interactions between the protein and surface in different adsorption stages. The results we obtained from simulation were found to be more adequate and complete than the previous one. We believe the model presented in this paper, in comparison with the previous ones, is a better theoretical model to understand and explain the experimental results.