期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Biomass-Derived Carbon Heterostructures Enable Environmentally Adaptive Wideband Electromagnetic Wave Absorbers 被引量:7
1
作者 Zhichao Lou Qiuyi Wang +8 位作者 Ufuoma IKara Rajdeep SMamtani Xiaodi Zhou huiyang bian Zhihong Yang Yanjun Li Hualiang Lv Solomon Adera Xiaoguang Wang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2022年第1期210-225,共16页
Although advances in wireless technologies such as miniature and wearable electronics have improved the quality of our lives,the ubiquitous use of electronics comes at the expense of increased exposure to electromagne... Although advances in wireless technologies such as miniature and wearable electronics have improved the quality of our lives,the ubiquitous use of electronics comes at the expense of increased exposure to electromagnetic(EM)radiation.Up to date,extensive efforts have been made to develop high-performance EM absorbers based on synthetic materials.However,the design of an EM absorber with both exceptional EM dissipation ability and good environmental adaptability remains a substantial challenge.Here,we report the design of a class of carbon heterostructures via hierarchical assembly of graphitized lignocellulose derived from bamboo.Specifically,the assemblies of nanofibers and nanosheets behave as a nanometer-sized antenna,which results in an enhancement of the conductive loss.In addition,we show that the composition of cellulose and lignin in the precursor significantly influences the shape of the assembly and the formation of covalent bonds,which affect the dielectric response-ability and the surface hydrophobicity(the apparent contact angle of water can reach 135°).Finally,we demonstrate that the obtained carbon heterostructure maintains its wideband EM absorption with an effective absorption frequency ranging from 12.5 to 16.7 GHz under conditions that simulate the real-world environment,including exposure to rainwater with slightly acidic/alkaline pH values.Overall,the advances reported in this work provide new design principles for the synthesis of high-performance EM absorbers that can find practical applications in real-world environments. 展开更多
关键词 Electromagnetic dissipation Carbon heterostructure Environment adaptability BAMBOO LIGNOCELLULOSE
下载PDF
Toward Sustainable,Economic,and Tailored Production of Cellulose Nanomaterials 被引量:4
2
作者 huiyang bian JunYong Zhu +1 位作者 LiHeng Chen Roland Gleisner 《Paper And Biomaterials》 2017年第4期1-7,共7页
This paper introduces a concentrated di-carboxylic acid(DCA) hydrolysis process for the integrated production of thermally stable and carboxylated cellulose nanocrystals(CNCs) and cellulose nanofibrils(CNFs). The DCA ... This paper introduces a concentrated di-carboxylic acid(DCA) hydrolysis process for the integrated production of thermally stable and carboxylated cellulose nanocrystals(CNCs) and cellulose nanofibrils(CNFs). The DCA hydrolysis process addressed several issues associated with mineral acid hydrolysis for CNC production, such as cellulose loss and acid recovery. The surface and morphological properties of the cellulose nanomaterials resulting from the DCA hydrolysis process can be tailored simply by controlling the severity of DCA hydrolysis. To further reduce cost, a lowtemperature(≤80℃) hydrotropic chemical process using p-toluenesulfonic acid(p-Ts OH) was also introduced to rapidly fractionate raw lignocelluloses for the production of lignin containing cellulose nanofibrils(LCNFs) and lignin nanoparticles(LNPs). The LCNF surface hydrophobicity and morphology can be tailored by controlling the fractionation severity, i.e., the extent of delignification. The lignin also improved the thermal stability of LCNFs. LNPs can be easily separated by diluting the spent acid liquor to below the p-Ts OH minimal hydrotropic concentration of approximately 10%. p-Ts OH can also be easily recovered by re-concentrating the diluted spent liquor after lignin precipitation. We believe that these two novel processes presented here have the potential to achieve true sustainable, economic, and tailored production of cellulose nanomaterials, suitable for a variety of applications. 展开更多
关键词 cellulose nanomaterials cellulose nanocrystals lignocellulosic nanofibrils sustainability tailored properties economic production
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部