It is very important for gas-structure interaction between compressible ideal gas and elastic structure of space folded membrane booms during the inflatable deployment. In order to study this gas-structure interaction...It is very important for gas-structure interaction between compressible ideal gas and elastic structure of space folded membrane booms during the inflatable deployment. In order to study this gas-structure interaction problem, Arbitrary Lagrangian-Eulerian (ALE) finite element method was employed. Gas-structure interaction equation was built based on equilibrium integration relationship, and solved by operator split method. In addition, numerical analysis of V-shape folded membrane booms inflated by gas was given, the variation of inner pressure as well as deployment velocities of inflatable boom at different stage were simulated. Moreover, these results are consistent with the experiment of the same boom~ which shows that both ALE method and operator split method are feasible and reliable methods to study gas-structure interaction problem.展开更多
Owing to the unique advantages in flight altitude,dwelling time and wide coverage area,stratospheric airships provide permanent monitoring and surveillance for both civil and military applications.Here we propose a se...Owing to the unique advantages in flight altitude,dwelling time and wide coverage area,stratospheric airships provide permanent monitoring and surveillance for both civil and military applications.Here we propose a semi-rigid stratosphere airship design with circumferential high-pressure inflatable rings and a longitudinal carbon fiber skeleton supported inside.We perform numerical simulations to analyze the deformation characteristics during the whole ascending and descending process.An equivalent internal gradient pressure model of helium is established based on the capsule shape and buoyancy-weight equilibrium conditions.The implicit dynamic method is used to deal with the large deformation of the airship capsule under a low negative pressure condition.Deformation and load-bearing performance of the airship capsule,inflatable ring,skeleton,and suspension line are obtained under different working conditions.The results show that the airship,supported with the inflatable rings and the suspension lines,effectively maintains the shape and ensures the stiffness during the ascending,dwelling,and descending stages,especially suffering from negative pressure.展开更多
基金supported by the National Natural Science Foundation of China (10902032)the National Key Laboratory Opening Funding of Advanced Composites in Special Environments (HIT.KLOF.2009035)
文摘It is very important for gas-structure interaction between compressible ideal gas and elastic structure of space folded membrane booms during the inflatable deployment. In order to study this gas-structure interaction problem, Arbitrary Lagrangian-Eulerian (ALE) finite element method was employed. Gas-structure interaction equation was built based on equilibrium integration relationship, and solved by operator split method. In addition, numerical analysis of V-shape folded membrane booms inflated by gas was given, the variation of inner pressure as well as deployment velocities of inflatable boom at different stage were simulated. Moreover, these results are consistent with the experiment of the same boom~ which shows that both ALE method and operator split method are feasible and reliable methods to study gas-structure interaction problem.
基金support from the National Natural Science Foundation of China(No.11872160).
文摘Owing to the unique advantages in flight altitude,dwelling time and wide coverage area,stratospheric airships provide permanent monitoring and surveillance for both civil and military applications.Here we propose a semi-rigid stratosphere airship design with circumferential high-pressure inflatable rings and a longitudinal carbon fiber skeleton supported inside.We perform numerical simulations to analyze the deformation characteristics during the whole ascending and descending process.An equivalent internal gradient pressure model of helium is established based on the capsule shape and buoyancy-weight equilibrium conditions.The implicit dynamic method is used to deal with the large deformation of the airship capsule under a low negative pressure condition.Deformation and load-bearing performance of the airship capsule,inflatable ring,skeleton,and suspension line are obtained under different working conditions.The results show that the airship,supported with the inflatable rings and the suspension lines,effectively maintains the shape and ensures the stiffness during the ascending,dwelling,and descending stages,especially suffering from negative pressure.