Ribonucleotides are usually functioned as biomarkers to diagnose diseases and monitor the life activities in living organisms,and their discrimination is of great significance but challenging.Taking advantage of the u...Ribonucleotides are usually functioned as biomarkers to diagnose diseases and monitor the life activities in living organisms,and their discrimination is of great significance but challenging.Taking advantage of the unique characteristics of gold nanorods(AuNRs),herein,a colorimetric sensor array for discrimination of twelve ribonucleotides was developed based on the chemical etching of AuNRs with controllable aspect ratios.During the etching process,AuNRs were preferentially shortened and eventually turned into Au(Ⅲ) state by Fenton's reaction.The morphological change of AuNRs led to the significant color change and blue shift in the corresponding extinction spectrum.However,when Fe^(2+)bound with ribonucleotides,the Fenton's reaction was prevented and the ability to etch AuNRs was weakened or disappeared.Due to the different structures of nucleotides,the binding ability of them with Fe^(2+) was distinct,resulting in the discrepancy in the chemical etching of AuNRs,which could be developed for distinguishing ribonucleotides.Moreover,the proposed sensor array was successfully explored to distinguish ribonucleotides in complex human urine samples.展开更多
基金Natural Science Foundation Project of China(No.21405123)Fundamental Research Funds for the Central Universities(No.XDJK2019AC002)for the financial support。
文摘Ribonucleotides are usually functioned as biomarkers to diagnose diseases and monitor the life activities in living organisms,and their discrimination is of great significance but challenging.Taking advantage of the unique characteristics of gold nanorods(AuNRs),herein,a colorimetric sensor array for discrimination of twelve ribonucleotides was developed based on the chemical etching of AuNRs with controllable aspect ratios.During the etching process,AuNRs were preferentially shortened and eventually turned into Au(Ⅲ) state by Fenton's reaction.The morphological change of AuNRs led to the significant color change and blue shift in the corresponding extinction spectrum.However,when Fe^(2+)bound with ribonucleotides,the Fenton's reaction was prevented and the ability to etch AuNRs was weakened or disappeared.Due to the different structures of nucleotides,the binding ability of them with Fe^(2+) was distinct,resulting in the discrepancy in the chemical etching of AuNRs,which could be developed for distinguishing ribonucleotides.Moreover,the proposed sensor array was successfully explored to distinguish ribonucleotides in complex human urine samples.