We establish the global existence of small-amplitude solutions near a global Maxwellian to the Cauchy problem of the Vlasov-Maxwell-Boltzmann system for non-cutoff soft potentials with weak angular singularity. This e...We establish the global existence of small-amplitude solutions near a global Maxwellian to the Cauchy problem of the Vlasov-Maxwell-Boltzmann system for non-cutoff soft potentials with weak angular singularity. This extends the work of Duan et al.(2013), in which the case of strong angular singularity is considered, to the case of weak angular singularity.展开更多
For the Boltzmann equation with an external force in the form of the gradient of a potential function in space variable, the stability of its stationary solutions as local Maxwellians was studied by S. Ukai et al. (2...For the Boltzmann equation with an external force in the form of the gradient of a potential function in space variable, the stability of its stationary solutions as local Maxwellians was studied by S. Ukai et al. (2005) through the energy method. Based on this stability analysis and some techniques on analyzing the convergence rates to stationary solutions for the compressible Navier-Stokes equations, in this paper, we study the convergence rate to the above stationary solutions for the Boltzmann equation which is a fundamental equation in statistical physics for non-equilibrium rarefied gas. By combining the dissipation from the viscosity and heat conductivity on the fluid components and the dissipation on the non-fluid component through the celebrated H-theorem, a convergence rate of the same order as the one for the compressible Navier-Stokes is obtained by constructing some energy functionals.展开更多
基金supported by the Fundamental Research Funds for the Central UniversitiesNational Natural Science Foundation of China(Grant Nos.11601169,11471142,11271160,11571063,11731008 and 11671309)
文摘We establish the global existence of small-amplitude solutions near a global Maxwellian to the Cauchy problem of the Vlasov-Maxwell-Boltzmann system for non-cutoff soft potentials with weak angular singularity. This extends the work of Duan et al.(2013), in which the case of strong angular singularity is considered, to the case of weak angular singularity.
基金Project supported by the Grant-in-Aid for Scientific Research (C) (No. 136470207)the Japan Society for the Promotion of Science (JSPS)+1 种基金the Strategic Research Grant of City University of Hong Kong (No.7001608)the National Natural Science Foundation of China (No.10431060, No.10329101).
文摘For the Boltzmann equation with an external force in the form of the gradient of a potential function in space variable, the stability of its stationary solutions as local Maxwellians was studied by S. Ukai et al. (2005) through the energy method. Based on this stability analysis and some techniques on analyzing the convergence rates to stationary solutions for the compressible Navier-Stokes equations, in this paper, we study the convergence rate to the above stationary solutions for the Boltzmann equation which is a fundamental equation in statistical physics for non-equilibrium rarefied gas. By combining the dissipation from the viscosity and heat conductivity on the fluid components and the dissipation on the non-fluid component through the celebrated H-theorem, a convergence rate of the same order as the one for the compressible Navier-Stokes is obtained by constructing some energy functionals.