期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
黏性依赖于密度的一维可压缩黏性辐射反应气体方程组的Cauchy问题 被引量:3
1
作者 廖勇凯 徐振东 赵会江 《中国科学:数学》 CSCD 北大核心 2019年第2期175-194,共20页
本文考虑一维可压缩黏性辐射反应气体方程组,对一类依赖于密度的、退化的黏性系数,得到了其Cauchy问题大初值非真空整体解的存在性.问题的关键在于如何得到密度和温度的正的上下界估计.
关键词 整体解 一维可压缩黏性辐射反应气体方程组 依赖于密度的退化的黏性系数 CAUCHY问题 大初值
原文传递
高维Burgers方程外区域问题球对称解的渐近行为
2
作者 杨彤 赵会江 赵青松 《中国科学:数学》 CSCD 北大核心 2021年第6期1057-1072,共16页
本文考虑高维Burgers方程外区域问题球对称解的大时间渐近行为,主要关注在球对称初始扰动下球对称稳态波的非线性稳定性.对这一问题,Hashimoto和Matsumura(2019)给出了保证其球对称稳态波存在性的一个充分条件,但是由于这一稳态波不再... 本文考虑高维Burgers方程外区域问题球对称解的大时间渐近行为,主要关注在球对称初始扰动下球对称稳态波的非线性稳定性.对这一问题,Hashimoto和Matsumura(2019)给出了保证其球对称稳态波存在性的一个充分条件,但是由于这一稳态波不再是单调的,他们只能在更强的假设下证明其非线性稳定性.本文的主要目的是在Hashimoto和Matsumura给出的保证这一稳态波存在的条件下证明其非线性稳定性.此外,还得到了该外区域问题的整体球对称解收敛到上述稳态波的关于时间变元的代数和指数衰减率估计.本文的稳定性分析是基于空间加权的能量方法,问题的关键在于构造适当的权函数来控制由于稳态波的非单调性及边界条件的出现所导致的困难.至于关于时间变元的衰减估计,除了这一空间加权的能量方法之外,还利用了由Kawashima和Matsumura在1985年引入的空间-时间加权的能量方法. 展开更多
关键词 高维Burgers方程 外区域问题 球对称稳态波 非线性稳定性 空间-时间加权的能量方法
原文传递
The non-cutoff Vlasov-Maxwell-Boltzmann system with weak angular singularity 被引量:1
3
作者 Yingzhe Fan Yuanjie Lei +1 位作者 Shuangqian Liu huijiang zhao 《Science China Mathematics》 SCIE CSCD 2018年第1期111-136,共26页
We establish the global existence of small-amplitude solutions near a global Maxwellian to the Cauchy problem of the Vlasov-Maxwell-Boltzmann system for non-cutoff soft potentials with weak angular singularity. This e... We establish the global existence of small-amplitude solutions near a global Maxwellian to the Cauchy problem of the Vlasov-Maxwell-Boltzmann system for non-cutoff soft potentials with weak angular singularity. This extends the work of Duan et al.(2013), in which the case of strong angular singularity is considered, to the case of weak angular singularity. 展开更多
关键词 non-cutoff Vlasov-Maxwell-Boltzmann system global solutions near Maxwellians weak angular singularity time-velocity weighted energy method
原文传递
Convergence Rate to Stationary Solutions for Boltzmann Equation with External Force 被引量:1
4
作者 Seiji UKAI Tong YANG huijiang zhao 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 2006年第4期363-378,共16页
For the Boltzmann equation with an external force in the form of the gradient of a potential function in space variable, the stability of its stationary solutions as local Maxwellians was studied by S. Ukai et al. (2... For the Boltzmann equation with an external force in the form of the gradient of a potential function in space variable, the stability of its stationary solutions as local Maxwellians was studied by S. Ukai et al. (2005) through the energy method. Based on this stability analysis and some techniques on analyzing the convergence rates to stationary solutions for the compressible Navier-Stokes equations, in this paper, we study the convergence rate to the above stationary solutions for the Boltzmann equation which is a fundamental equation in statistical physics for non-equilibrium rarefied gas. By combining the dissipation from the viscosity and heat conductivity on the fluid components and the dissipation on the non-fluid component through the celebrated H-theorem, a convergence rate of the same order as the one for the compressible Navier-Stokes is obtained by constructing some energy functionals. 展开更多
关键词 Convergence rate Boltzmann equation with external force Energy functionals Stationary solutions
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部