Efficient viral vectors for mapping and manipulating long-projection neuronal circuits are crucial in structural and functional studies of the brain. The SAD strain rabies virus with the glycoprotein gene deleted pseu...Efficient viral vectors for mapping and manipulating long-projection neuronal circuits are crucial in structural and functional studies of the brain. The SAD strain rabies virus with the glycoprotein gene deleted pseudotyped with the N2 C glycoprotein(SAD-RV(DG)-N2 C(G)) shows strong neuro-tropism in cell culture, but its in vivo efficiency for retrograde gene transduction and neuro-tropism have not been systematically characterized.We compared these features in different mouse brain regions for SAD-RV-N2 C(G) and two other widely-used retrograde tracers, SAD-RV(DG)-B19(G) and r AAV2-retro. We found that SAD-RV(DG)-N2 C(G) enhanced the infection efficiency of long-projecting neurons by^10 times but with very similar neuro-tropism, compared with SAD-RV(DG)-B19(G). On the other hand, SAD-RV(DG)-N2 C(G) had an infection efficiency comparable with r AAV2-retro, but a more restricted diffusion range, and broader tropism to different types and regions of longprojecting neuronal populations. These results demonstrate that SAD-RV(DG)-N2 C(G) can serve as an effective retrograde vector for studying neuronal circuits.展开更多
基金the National Basic Research Program(973 Program)of China(2015CB755601)the Strategic Priority Research Program of the Chinese Academy of Sciences(XDB32030200)+1 种基金the National Natural Science Foundation of China(31771156,81661148053,91632303,31800885,31500868,31671120 and 91732304)the China Postdoctoral Science Foundation(2019M653118 and 2018M632946).
文摘Efficient viral vectors for mapping and manipulating long-projection neuronal circuits are crucial in structural and functional studies of the brain. The SAD strain rabies virus with the glycoprotein gene deleted pseudotyped with the N2 C glycoprotein(SAD-RV(DG)-N2 C(G)) shows strong neuro-tropism in cell culture, but its in vivo efficiency for retrograde gene transduction and neuro-tropism have not been systematically characterized.We compared these features in different mouse brain regions for SAD-RV-N2 C(G) and two other widely-used retrograde tracers, SAD-RV(DG)-B19(G) and r AAV2-retro. We found that SAD-RV(DG)-N2 C(G) enhanced the infection efficiency of long-projecting neurons by^10 times but with very similar neuro-tropism, compared with SAD-RV(DG)-B19(G). On the other hand, SAD-RV(DG)-N2 C(G) had an infection efficiency comparable with r AAV2-retro, but a more restricted diffusion range, and broader tropism to different types and regions of longprojecting neuronal populations. These results demonstrate that SAD-RV(DG)-N2 C(G) can serve as an effective retrograde vector for studying neuronal circuits.