Exohiss is a low-frequency structureless whistler-mode emission potentially contributing to the precipitation loss of radiation belt electrons outside the plasmasphere. Exohiss is usually considered the plasmaspheric ...Exohiss is a low-frequency structureless whistler-mode emission potentially contributing to the precipitation loss of radiation belt electrons outside the plasmasphere. Exohiss is usually considered the plasmaspheric hiss leaked out of the dayside plasmapause.However, the evolution of exohiss after the leakage has not been fully understood. Here we report the prompt enhancements of exohiss waves following substorm injections observed by Van Allen Probes. Within several minutes, the energetic electron fluxes around 100 keV were enhanced by up to 5 times, accompanied by an up to 10-time increase of the exohiss wave power. These substorm-injected electrons are shown to produce a new peak of linear growth rate in the exohiss band(< 0.1 f_(ce)). The corresponding path-integrated growth rate of wave power within 10° latitude of the magnetic equatorial plane can reach 13.4, approximately explaining the observed enhancement of exohiss waves. These observations and simulations suggest that the substorm-injected energetic electrons could amplify the preexisting exohiss waves.展开更多
The process of magnetic reconnection in non_periodic three_layer current sheets is studied numerically by using two_dimensional magnetohydrodynamic simulation. The results show that unlike periodic current sheets, it ...The process of magnetic reconnection in non_periodic three_layer current sheets is studied numerically by using two_dimensional magnetohydrodynamic simulation. The results show that unlike periodic current sheets, it is complex unsteady magnetic reconnection. It may be important for solar flare and corona heating.展开更多
基金supported by National Natural Science Foundation of China grants 41631071, 41774170, 41274174, 41174125, 41131065, 41421063, 41231066 and 41304134Chinese Academy of Sciences grants KZCX2-EW-QN510 and KZZD-EW-01-4+2 种基金CAS Key Research Program of Frontier Sciences grant QYZDB-SSWDQC015National Key Basic Research Special Foundation of China Grant No. 2011CB811403Fundamental Research Funds for the Central Universities WK2080000077
文摘Exohiss is a low-frequency structureless whistler-mode emission potentially contributing to the precipitation loss of radiation belt electrons outside the plasmasphere. Exohiss is usually considered the plasmaspheric hiss leaked out of the dayside plasmapause.However, the evolution of exohiss after the leakage has not been fully understood. Here we report the prompt enhancements of exohiss waves following substorm injections observed by Van Allen Probes. Within several minutes, the energetic electron fluxes around 100 keV were enhanced by up to 5 times, accompanied by an up to 10-time increase of the exohiss wave power. These substorm-injected electrons are shown to produce a new peak of linear growth rate in the exohiss band(< 0.1 f_(ce)). The corresponding path-integrated growth rate of wave power within 10° latitude of the magnetic equatorial plane can reach 13.4, approximately explaining the observed enhancement of exohiss waves. These observations and simulations suggest that the substorm-injected energetic electrons could amplify the preexisting exohiss waves.
文摘The process of magnetic reconnection in non_periodic three_layer current sheets is studied numerically by using two_dimensional magnetohydrodynamic simulation. The results show that unlike periodic current sheets, it is complex unsteady magnetic reconnection. It may be important for solar flare and corona heating.