期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
CONVERGENCE OF A MIXED FINITE ELEMENT FOR THE STOKES PROBLEM ON ANISOTROPIC MESHES 被引量:1
1
作者 Qingshan Li huixia sun Shaochun Chen 《Journal of Computational Mathematics》 SCIE EI CSCD 2008年第5期740-755,共16页
The main aim of this paper is to study the convergence properties of a low order mixed finite element for the Stokes problem under anisotropic meshes. We discuss the anisotropic convergence and superconvergence indepe... The main aim of this paper is to study the convergence properties of a low order mixed finite element for the Stokes problem under anisotropic meshes. We discuss the anisotropic convergence and superconvergence independent of the aspect ratio. Without the shape regularity assumption and inverse assumption on the meshes, the optimal error estimates and natural superconvergence at central points are obtained. The global superconvergence for the gradient of the velocity and the pressure is derived with the aid of a suitable postprocessing method. Furthermore, we develop a simple method to obtain the superclose properties which improves the results of the previous works . 展开更多
关键词 Mixed finite element Shape regularity assumption and 65N30 Stokes problem Anisotropic meshes Superconvergence inverse assumption.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部