We report a facile template-free fabrication of heterostructured Co_(3)O_(4)/CuO hollow nanospheres using pre-synthesized Co/Cu-glycerate as conformal precursor.The introduction of copper nitrate in the solvothermal r...We report a facile template-free fabrication of heterostructured Co_(3)O_(4)/CuO hollow nanospheres using pre-synthesized Co/Cu-glycerate as conformal precursor.The introduction of copper nitrate in the solvothermal reaction system of glycerol/isopropanol/cobalt nitrate readily induces the conversion from solid Co-glycerate to hollow Co/Cu-glycerate nanospheres,and the effect of the Co/Cu atomic ratio on the structure evolution of the metal glycerates as well as their corresponding oxides were investigated.When examined as anode materials for lithium-ion batteries,the well-defined Co_(3)O_(4)/CuO hollow nanospheres with Co/Cu molar ratio of 2.0 demonstrate excellent lithium storage performance,delivering a high reversible capacity of 930 mAh/g after 300 cycles at a current density of 0.5 A/g and a stable capacity of 650 mAh/g after 500 cycles even at a higher current density of 2.0 A/g,which are much better than their counterparts of bare CuO and Co_(3)O_(4).The enhanced lithium storage performance can be attributed to the synergistic effect of the CuO and Co_(3)O_(4)heterostructure with hollow spherical morphology,which greatly enhances the charge/electrolyte transfer and effectively buffers the volume changes upon lithiation/delithiation cycling.展开更多
基金supported by the National Natural Science Foundation of China(No.52077175).
文摘We report a facile template-free fabrication of heterostructured Co_(3)O_(4)/CuO hollow nanospheres using pre-synthesized Co/Cu-glycerate as conformal precursor.The introduction of copper nitrate in the solvothermal reaction system of glycerol/isopropanol/cobalt nitrate readily induces the conversion from solid Co-glycerate to hollow Co/Cu-glycerate nanospheres,and the effect of the Co/Cu atomic ratio on the structure evolution of the metal glycerates as well as their corresponding oxides were investigated.When examined as anode materials for lithium-ion batteries,the well-defined Co_(3)O_(4)/CuO hollow nanospheres with Co/Cu molar ratio of 2.0 demonstrate excellent lithium storage performance,delivering a high reversible capacity of 930 mAh/g after 300 cycles at a current density of 0.5 A/g and a stable capacity of 650 mAh/g after 500 cycles even at a higher current density of 2.0 A/g,which are much better than their counterparts of bare CuO and Co_(3)O_(4).The enhanced lithium storage performance can be attributed to the synergistic effect of the CuO and Co_(3)O_(4)heterostructure with hollow spherical morphology,which greatly enhances the charge/electrolyte transfer and effectively buffers the volume changes upon lithiation/delithiation cycling.