期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
An Optimum Dose of Olive Leaf Extract Improves Insulin Receptor Substrate-1,Tyrosine Kinase,and Glucose Transporters,While High Doses Have Genotoxic and Apoptotic Effects
1
作者 Abdurrahim Kocyigit Burcin Kasap +4 位作者 Eray Metin Guler humeyra nur kaleli Mustafa Kesmen Murat Dikilitas Ersin Karatas 《American Journal of Plant Sciences》 2019年第11期1933-1948,共16页
Type 2 diabetes is the most common type of diabetes. Conventionally many drugs are used for the treatment of diabetes such as biguanides, sulfonylureas, meglitinides, etc. But the desired effective treatment is still ... Type 2 diabetes is the most common type of diabetes. Conventionally many drugs are used for the treatment of diabetes such as biguanides, sulfonylureas, meglitinides, etc. But the desired effective treatment is still not to be achieved. So researches are going on for the development of effective alternative therapy against diabetes. Olive leaves are traditionally used in the treatment of the disease. However, studies on its mechanism of action are not yet enough. The aim of this study was to investigate whether olive leaf extract (OLE) improves insulin receptor substrate-1 (IRS-1), tyrosine kinase (TK), GLUT-2, and GLUT-4. Oleuropein levels were analyzed from OLE obtained by using four different solvents, and the highest content of methanol extract was selected for the study. Different concentrations of OLE (2.5 to 320 μg/mL) were incubated with hepatocellular carcinoma (HepG2) cells for 24 hours. After incubation, cell viability was assessed based on luminometric ATP cell viability assay kit. Intracellular reactive oxygen species (ROS) generating level was detected using 2,7dichlorodihydrofluorescein-diacetate (H2DCF-DA) fluorescent probes. Apoptosis was evaluated by acridine orange/ethidium bromide double staining method. Genotoxicity was evaluated by alkaline single cell gel electrophoresis assay (Comet Assay). Protein expression levels of IRS-1, TK, GLUT-2, and GLUT-4 were analyzed by western blotting technique from the obtained cell lysates. Although an optimum doses of OLE (10 μg/mL) maximally increased cell proliferation, decreased ROS generation improved IRS-1, TK, GLUT-2, and GLUT-4 protein expression levels (about fivefold), higher doses (10 to 320 μg/mL) markedly decreased the cell viability, increased DNA damage, apoptosis and ROS generation in a concentration-dependent manner. OLE can be used in the treatment of type 2 diabetes. However, in order to find the most effective and non-toxic concentration, dose optimization is required. 展开更多
关键词 PHYTOTHERAPY Diabetes Mellitus Olive Leaf Extract Glucose Transporters Insulin Receptors
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部