For cell culture scaffold innovation,3DPVS,namely 3D printed vibratory scaffold,was indicated as a future novel product,and it currently stands at conceptual development stage.One essential part for 3DPVS design is in...For cell culture scaffold innovation,3DPVS,namely 3D printed vibratory scaffold,was indicated as a future novel product,and it currently stands at conceptual development stage.One essential part for 3DPVS design is innovation,and TRIZ(algorithm of inventive problem solving)was studied as promising method for generating novel conceptual solutions.This study targets designing and solving 3DPVS problems using TRIZ in the new biodimension.We aim to utilize TRIZ to conduct a multi-layer problem-solving process,which is to address design concerns of 3DPVS,especially at super-system to system level.In this connection,TRIZ is used to address basic constraints and contradictions inside regarding trinity of 3D printing,3D scaffold and bio-based vibratory functionality.In the study,five basic conceptual solutions for potential 3DPVS,namely magnetic,electric,mechanical,light and thermal based,have been generated.A brief evaluation has also been conducted,where magnetic-based 3DPVS shows the relatively highest applicability as potential 3DPVS.Compared with traditional experimental-oriented processes for biodesign,the approach of utilizing TRIZ can be inspiring and reinvigorating,which prepares a ground for future 3DPVS design to address detailed sub-system concerns.This study might,to some extent,fill a gap in scaffold design and TRIZ literature and hopefully provide a comprehensive perspective of a timely topic.展开更多
Understanding the ecology of the gastrointestinal tract and the impact of the contents on the host mucosa is emerging as an important area for defining both wellness and susceptibility to disease. Targeted delivery of...Understanding the ecology of the gastrointestinal tract and the impact of the contents on the host mucosa is emerging as an important area for defining both wellness and susceptibility to disease. Targeted delivery of drugs to treat specific small intestinal disorders such as small bowel bacterial overgrowth and targeting molecules to interrogate or to deliver vaccines to the remote regions of the small intestine has proven difficult. There is an unmet need for methodologies to release probes/drugs to remote regions of the gastrointestinal tract in furthering our understanding of gut health and pathogenesis. In order to address this concern, we need to know how the regional delivery of a surrogate labeled test compound is handled and in turn, if delivered locally as a liquid or powder, the dynamics of its subsequent handling and metabolism. In the studies we report on in this paper, we chose ^13 C sodium acetate(^13C-acetate), which is a stable isotope probe that once absorbed in the small intestine can be readily measured non-invasively by collection and analysis of ^13CO2 in the breath. This would provide information of gastric emptying rates and an indication of the site of release and absorptive capacity. In a series of in vitro and in vivo pig experiments, we assessed the enteric-protective properties of a commercially available polymer EUDRAGIT L100-55 on gelatin capsules and also on DRcaps. Test results demonstrated that DRcaps coated with EUDRAGIT L100-55 possessed enhanced enteric-protective properties, particularly in vivo. These studies add to the body of knowledge regarding gastric emptying in pigs and also begin the process of gathering specifications for the design of a simple and cost-effective enteric-coated capsule for delivery of acid-labile macromolecules to the small intestine.展开更多
文摘For cell culture scaffold innovation,3DPVS,namely 3D printed vibratory scaffold,was indicated as a future novel product,and it currently stands at conceptual development stage.One essential part for 3DPVS design is innovation,and TRIZ(algorithm of inventive problem solving)was studied as promising method for generating novel conceptual solutions.This study targets designing and solving 3DPVS problems using TRIZ in the new biodimension.We aim to utilize TRIZ to conduct a multi-layer problem-solving process,which is to address design concerns of 3DPVS,especially at super-system to system level.In this connection,TRIZ is used to address basic constraints and contradictions inside regarding trinity of 3D printing,3D scaffold and bio-based vibratory functionality.In the study,five basic conceptual solutions for potential 3DPVS,namely magnetic,electric,mechanical,light and thermal based,have been generated.A brief evaluation has also been conducted,where magnetic-based 3DPVS shows the relatively highest applicability as potential 3DPVS.Compared with traditional experimental-oriented processes for biodesign,the approach of utilizing TRIZ can be inspiring and reinvigorating,which prepares a ground for future 3DPVS design to address detailed sub-system concerns.This study might,to some extent,fill a gap in scaffold design and TRIZ literature and hopefully provide a comprehensive perspective of a timely topic.
基金Project supported by the Australian Research Council(ARC)Linkage Project Grant(No.LP0990847)
文摘Understanding the ecology of the gastrointestinal tract and the impact of the contents on the host mucosa is emerging as an important area for defining both wellness and susceptibility to disease. Targeted delivery of drugs to treat specific small intestinal disorders such as small bowel bacterial overgrowth and targeting molecules to interrogate or to deliver vaccines to the remote regions of the small intestine has proven difficult. There is an unmet need for methodologies to release probes/drugs to remote regions of the gastrointestinal tract in furthering our understanding of gut health and pathogenesis. In order to address this concern, we need to know how the regional delivery of a surrogate labeled test compound is handled and in turn, if delivered locally as a liquid or powder, the dynamics of its subsequent handling and metabolism. In the studies we report on in this paper, we chose ^13 C sodium acetate(^13C-acetate), which is a stable isotope probe that once absorbed in the small intestine can be readily measured non-invasively by collection and analysis of ^13CO2 in the breath. This would provide information of gastric emptying rates and an indication of the site of release and absorptive capacity. In a series of in vitro and in vivo pig experiments, we assessed the enteric-protective properties of a commercially available polymer EUDRAGIT L100-55 on gelatin capsules and also on DRcaps. Test results demonstrated that DRcaps coated with EUDRAGIT L100-55 possessed enhanced enteric-protective properties, particularly in vivo. These studies add to the body of knowledge regarding gastric emptying in pigs and also begin the process of gathering specifications for the design of a simple and cost-effective enteric-coated capsule for delivery of acid-labile macromolecules to the small intestine.