On-site investigations consistently show that the rock burst inherent to coal seams varies greatly with coal seam thickness.In this study,impact factors related to coal seam thickness and surrounding rock strength wer...On-site investigations consistently show that the rock burst inherent to coal seams varies greatly with coal seam thickness.In this study,impact factors related to coal seam thickness and surrounding rock strength were analyzed and a corresponding rock burst risk assessment method was constructed.The model reflects the influence of coal seam thickness on the stress distribution of surrounding rock at the roadway.Based on the roadway excavation range,a stress distribution model of surrounding roadway rock is established and the influence of coal seam thickness on rock burst risk is analyzed accordingly.The proposed rock burst risk assessment method is based on the equivalent surrounding rock strength and coal seam bursting liability.The proposed method was tested in a 3500 mining area to find that it yields rock burst risk assessment results as per coal seam thickness that are in accordance with real-world conditions.The results presented here suggest that coal seam thickness is a crucial factor in effective rock burst risk assessment.展开更多
Water regulation of the Xiaolangdi Reservoir of the Yellow River was chosen as a case to investigate variations in concentrations and bioavailability of heavy metals caused by water conservancy projects in rivers. Wat...Water regulation of the Xiaolangdi Reservoir of the Yellow River was chosen as a case to investigate variations in concentrations and bioavailability of heavy metals caused by water conservancy projects in rivers. Water and suspended sediment(SPS) samples were collected at downstream sampling sites along the river during this period. Concentrations and speciation of Zn, Cr, Cu, Ni, and Pb in water and SPS samples were analyzed, and their bioaccumulation was studied with Daphnia magna. This study indicated that the exchangeable and carbonatebound fractions of heavy metals in SPS decreased along the studied stretch, and the dissolved heavy metal concentrations increased along the river with 1.6–15 folds. This is because sediment resuspension increased along the river during water regulation, giving rise to the increase of heavy metal release from SPS. The dissolved Zn, Cu, Ni, and Pb concentrations were significantly positively correlated with SPS concentrations, and their increase along the river was greater than Cr. The body burdens of heavy metals in D. magna exposed into samples collected from the reservoir outlet were 1.3–3.0 times lower than those from downstream stations, suggesting that the heavy metal bioavailability increased during water regulation.This should be considered in the reservoir operation.展开更多
基金supported and financed from Special Funds for Basic Research Business Fees of China Academy of Safety Science and Technology(Nos.2016JBKY16,2017JBKY05)National Key Research and Development Program of China(No.2017YFC0804603)Subject of Beijing Science and Technology Commission(No.Z171100002317008)
文摘On-site investigations consistently show that the rock burst inherent to coal seams varies greatly with coal seam thickness.In this study,impact factors related to coal seam thickness and surrounding rock strength were analyzed and a corresponding rock burst risk assessment method was constructed.The model reflects the influence of coal seam thickness on the stress distribution of surrounding rock at the roadway.Based on the roadway excavation range,a stress distribution model of surrounding roadway rock is established and the influence of coal seam thickness on rock burst risk is analyzed accordingly.The proposed rock burst risk assessment method is based on the equivalent surrounding rock strength and coal seam bursting liability.The proposed method was tested in a 3500 mining area to find that it yields rock burst risk assessment results as per coal seam thickness that are in accordance with real-world conditions.The results presented here suggest that coal seam thickness is a crucial factor in effective rock burst risk assessment.
基金supported by the National Key R&D Program of China(No.2017YFA0605001)the National Natural Science Foundation of China(No.91547207)the Fund for Innovative Research Group of the National Natural Science Foundation of China(No.51721093)
文摘Water regulation of the Xiaolangdi Reservoir of the Yellow River was chosen as a case to investigate variations in concentrations and bioavailability of heavy metals caused by water conservancy projects in rivers. Water and suspended sediment(SPS) samples were collected at downstream sampling sites along the river during this period. Concentrations and speciation of Zn, Cr, Cu, Ni, and Pb in water and SPS samples were analyzed, and their bioaccumulation was studied with Daphnia magna. This study indicated that the exchangeable and carbonatebound fractions of heavy metals in SPS decreased along the studied stretch, and the dissolved heavy metal concentrations increased along the river with 1.6–15 folds. This is because sediment resuspension increased along the river during water regulation, giving rise to the increase of heavy metal release from SPS. The dissolved Zn, Cu, Ni, and Pb concentrations were significantly positively correlated with SPS concentrations, and their increase along the river was greater than Cr. The body burdens of heavy metals in D. magna exposed into samples collected from the reservoir outlet were 1.3–3.0 times lower than those from downstream stations, suggesting that the heavy metal bioavailability increased during water regulation.This should be considered in the reservoir operation.