In recent years,the usage of social networking sites has considerably increased in the Arab world.It has empowered individuals to express their opinions,especially in politics.Furthermore,various organizations that op...In recent years,the usage of social networking sites has considerably increased in the Arab world.It has empowered individuals to express their opinions,especially in politics.Furthermore,various organizations that operate in the Arab countries have embraced social media in their day-to-day business activities at different scales.This is attributed to business owners’understanding of social media’s importance for business development.However,the Arabic morphology is too complicated to understand due to the availability of nearly 10,000 roots and more than 900 patterns that act as the basis for verbs and nouns.Hate speech over online social networking sites turns out to be a worldwide issue that reduces the cohesion of civil societies.In this background,the current study develops a Chaotic Elephant Herd Optimization with Machine Learning for Hate Speech Detection(CEHOML-HSD)model in the context of the Arabic language.The presented CEHOML-HSD model majorly concentrates on identifying and categorising the Arabic text into hate speech and normal.To attain this,the CEHOML-HSD model follows different sub-processes as discussed herewith.At the initial stage,the CEHOML-HSD model undergoes data pre-processing with the help of the TF-IDF vectorizer.Secondly,the Support Vector Machine(SVM)model is utilized to detect and classify the hate speech texts made in the Arabic language.Lastly,the CEHO approach is employed for fine-tuning the parameters involved in SVM.This CEHO approach is developed by combining the chaotic functions with the classical EHO algorithm.The design of the CEHO algorithm for parameter tuning shows the novelty of the work.A widespread experimental analysis was executed to validate the enhanced performance of the proposed CEHOML-HSD approach.The comparative study outcomes established the supremacy of the proposed CEHOML-HSD model over other approaches.展开更多
Text classification or categorization is the procedure of automatically tagging a textual document with most related labels or classes.When the number of labels is limited to one,the task becomes single-label text cat...Text classification or categorization is the procedure of automatically tagging a textual document with most related labels or classes.When the number of labels is limited to one,the task becomes single-label text categorization.The Arabic texts include unstructured information also like English texts,and that is understandable for machine learning(ML)techniques,the text is changed and demonstrated by numerical value.In recent times,the dominant method for natural language processing(NLP)tasks is recurrent neural network(RNN),in general,long short termmemory(LSTM)and convolutional neural network(CNN).Deep learning(DL)models are currently presented for deriving a massive amount of text deep features to an optimum performance from distinct domains such as text detection,medical image analysis,and so on.This paper introduces aModified Dragonfly Optimization with Extreme Learning Machine for Text Representation and Recognition(MDFO-EMTRR)model onArabicCorpus.The presentedMDFO-EMTRR technique mainly concentrates on the recognition and classification of the Arabic text.To achieve this,theMDFO-EMTRRtechnique encompasses data pre-processing to transform the input data into compatible format.Next,the ELM model is utilized for the representation and recognition of the Arabic text.At last,the MDFO algorithm was exploited for optimal tuning of the parameters related to the ELM method and thereby accomplish enhanced classifier results.The experimental result analysis of the MDFO-EMTRR system was performed on benchmark datasets and attained maximum accuracy of 99.74%.展开更多
Sentiment Analysis(SA)of natural language text is not only a challenging process but also gains significance in various Natural Language Processing(NLP)applications.The SA is utilized in various applications,namely,ed...Sentiment Analysis(SA)of natural language text is not only a challenging process but also gains significance in various Natural Language Processing(NLP)applications.The SA is utilized in various applications,namely,education,to improve the learning and teaching processes,marketing strategies,customer trend predictions,and the stock market.Various researchers have applied lexicon-related approaches,Machine Learning(ML)techniques and so on to conduct the SA for multiple languages,for instance,English and Chinese.Due to the increased popularity of the Deep Learning models,the current study used diverse configuration settings of the Convolution Neural Network(CNN)model and conducted SA for Hindi movie reviews.The current study introduces an Effective Improved Metaheuristics with Deep Learning(DL)-Enabled Sentiment Analysis for Movie Reviews(IMDLSA-MR)model.The presented IMDLSA-MR technique initially applies different levels of pre-processing to convert the input data into a compatible format.Besides,the Term Frequency-Inverse Document Frequency(TF-IDF)model is exploited to generate the word vectors from the pre-processed data.The Deep Belief Network(DBN)model is utilized to analyse and classify the sentiments.Finally,the improved Jellyfish Search Optimization(IJSO)algorithm is utilized for optimal fine-tuning of the hyperparameters related to the DBN model,which shows the novelty of the work.Different experimental analyses were conducted to validate the better performance of the proposed IMDLSA-MR model.The comparative study outcomes highlighted the enhanced performance of the proposed IMDLSA-MR model over recent DL models with a maximum accuracy of 98.92%.展开更多
Sentiment analysis(SA)of the Arabic language becomes important despite scarce annotated corpora and confined sources.Arabic affect Analysis has become an active research zone nowadays.But still,the Arabic language lag...Sentiment analysis(SA)of the Arabic language becomes important despite scarce annotated corpora and confined sources.Arabic affect Analysis has become an active research zone nowadays.But still,the Arabic language lags behind adequate language sources for enabling the SA tasks.Thus,Arabic still faces challenges in natural language processing(NLP)tasks because of its structure complexities,history,and distinct cultures.It has gained lesser effort than the other languages.This paper developed a Multi-versus Optimization with Deep Reinforcement Learning Enabled Affect Analysis(MVODRL-AA)on Arabic Corpus.The presented MVODRL-AAmodelmajorly concentrates on identifying and classifying effects or emotions that occurred in the Arabic corpus.Firstly,the MVODRL-AA model follows data pre-processing and word embedding.Next,an n-gram model is utilized to generate word embeddings.A deep Q-learning network(DQLN)model is then exploited to identify and classify the effect on the Arabic corpus.At last,the MVO algorithm is used as a hyperparameter tuning approach to adjust the hyperparameters related to the DQLN model,showing the novelty of the work.A series of simulations were carried out to exhibit the promising performance of the MVODRL-AA model.The simulation outcomes illustrate the betterment of the MVODRL-AA method over the other approaches with an accuracy of 99.27%.展开更多
基金Princess Nourah bint Abdulrahman University Researchers Supporting Project Number(PNURSP2024R263)Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.This study is supported via funding from Prince Sattam bin Abdulaziz University Project Number(PSAU/2024/R/1445).
文摘In recent years,the usage of social networking sites has considerably increased in the Arab world.It has empowered individuals to express their opinions,especially in politics.Furthermore,various organizations that operate in the Arab countries have embraced social media in their day-to-day business activities at different scales.This is attributed to business owners’understanding of social media’s importance for business development.However,the Arabic morphology is too complicated to understand due to the availability of nearly 10,000 roots and more than 900 patterns that act as the basis for verbs and nouns.Hate speech over online social networking sites turns out to be a worldwide issue that reduces the cohesion of civil societies.In this background,the current study develops a Chaotic Elephant Herd Optimization with Machine Learning for Hate Speech Detection(CEHOML-HSD)model in the context of the Arabic language.The presented CEHOML-HSD model majorly concentrates on identifying and categorising the Arabic text into hate speech and normal.To attain this,the CEHOML-HSD model follows different sub-processes as discussed herewith.At the initial stage,the CEHOML-HSD model undergoes data pre-processing with the help of the TF-IDF vectorizer.Secondly,the Support Vector Machine(SVM)model is utilized to detect and classify the hate speech texts made in the Arabic language.Lastly,the CEHO approach is employed for fine-tuning the parameters involved in SVM.This CEHO approach is developed by combining the chaotic functions with the classical EHO algorithm.The design of the CEHO algorithm for parameter tuning shows the novelty of the work.A widespread experimental analysis was executed to validate the enhanced performance of the proposed CEHOML-HSD approach.The comparative study outcomes established the supremacy of the proposed CEHOML-HSD model over other approaches.
基金Princess Nourah bint Abdulrahman University Researchers Supporting Project number(PNURSP2022R263),Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabiathe Deanship of Scientific Research at Umm Al-Qura University for supporting this work by Grant Code:22UQU4340237DSR35.
文摘Text classification or categorization is the procedure of automatically tagging a textual document with most related labels or classes.When the number of labels is limited to one,the task becomes single-label text categorization.The Arabic texts include unstructured information also like English texts,and that is understandable for machine learning(ML)techniques,the text is changed and demonstrated by numerical value.In recent times,the dominant method for natural language processing(NLP)tasks is recurrent neural network(RNN),in general,long short termmemory(LSTM)and convolutional neural network(CNN).Deep learning(DL)models are currently presented for deriving a massive amount of text deep features to an optimum performance from distinct domains such as text detection,medical image analysis,and so on.This paper introduces aModified Dragonfly Optimization with Extreme Learning Machine for Text Representation and Recognition(MDFO-EMTRR)model onArabicCorpus.The presentedMDFO-EMTRR technique mainly concentrates on the recognition and classification of the Arabic text.To achieve this,theMDFO-EMTRRtechnique encompasses data pre-processing to transform the input data into compatible format.Next,the ELM model is utilized for the representation and recognition of the Arabic text.At last,the MDFO algorithm was exploited for optimal tuning of the parameters related to the ELM method and thereby accomplish enhanced classifier results.The experimental result analysis of the MDFO-EMTRR system was performed on benchmark datasets and attained maximum accuracy of 99.74%.
基金Princess Nourah bint Abdulrahman University Researchers Supporting Project Number(PNURSP2023R161)Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.The authors would like to thank the Deanship of Scientific Research at Umm Al-Qura University for supporting this work by Grant Code:22UQU4340237DSR51).
文摘Sentiment Analysis(SA)of natural language text is not only a challenging process but also gains significance in various Natural Language Processing(NLP)applications.The SA is utilized in various applications,namely,education,to improve the learning and teaching processes,marketing strategies,customer trend predictions,and the stock market.Various researchers have applied lexicon-related approaches,Machine Learning(ML)techniques and so on to conduct the SA for multiple languages,for instance,English and Chinese.Due to the increased popularity of the Deep Learning models,the current study used diverse configuration settings of the Convolution Neural Network(CNN)model and conducted SA for Hindi movie reviews.The current study introduces an Effective Improved Metaheuristics with Deep Learning(DL)-Enabled Sentiment Analysis for Movie Reviews(IMDLSA-MR)model.The presented IMDLSA-MR technique initially applies different levels of pre-processing to convert the input data into a compatible format.Besides,the Term Frequency-Inverse Document Frequency(TF-IDF)model is exploited to generate the word vectors from the pre-processed data.The Deep Belief Network(DBN)model is utilized to analyse and classify the sentiments.Finally,the improved Jellyfish Search Optimization(IJSO)algorithm is utilized for optimal fine-tuning of the hyperparameters related to the DBN model,which shows the novelty of the work.Different experimental analyses were conducted to validate the better performance of the proposed IMDLSA-MR model.The comparative study outcomes highlighted the enhanced performance of the proposed IMDLSA-MR model over recent DL models with a maximum accuracy of 98.92%.
基金Princess Nourah bint Abdulrahman University Researchers Supporting Project Number (PNURSP2022R263)Princess Nourah bint Abdulrahman University,Riyadh,Saudi Ara-bia.The authors would like to thank the Deanship of Scientific Research at Umm Al-Qura University for supporting this work by Grant Code:22UQU4340237DSR38.
文摘Sentiment analysis(SA)of the Arabic language becomes important despite scarce annotated corpora and confined sources.Arabic affect Analysis has become an active research zone nowadays.But still,the Arabic language lags behind adequate language sources for enabling the SA tasks.Thus,Arabic still faces challenges in natural language processing(NLP)tasks because of its structure complexities,history,and distinct cultures.It has gained lesser effort than the other languages.This paper developed a Multi-versus Optimization with Deep Reinforcement Learning Enabled Affect Analysis(MVODRL-AA)on Arabic Corpus.The presented MVODRL-AAmodelmajorly concentrates on identifying and classifying effects or emotions that occurred in the Arabic corpus.Firstly,the MVODRL-AA model follows data pre-processing and word embedding.Next,an n-gram model is utilized to generate word embeddings.A deep Q-learning network(DQLN)model is then exploited to identify and classify the effect on the Arabic corpus.At last,the MVO algorithm is used as a hyperparameter tuning approach to adjust the hyperparameters related to the DQLN model,showing the novelty of the work.A series of simulations were carried out to exhibit the promising performance of the MVODRL-AA model.The simulation outcomes illustrate the betterment of the MVODRL-AA method over the other approaches with an accuracy of 99.27%.