Mobile Ad-hoc Networks (MANETs) operate without infrastructure where nodes can move randomly. Therefore, routing in MANETs is a challenging task. In this paper we evaluate the performance of three important MANET rout...Mobile Ad-hoc Networks (MANETs) operate without infrastructure where nodes can move randomly. Therefore, routing in MANETs is a challenging task. In this paper we evaluate the performance of three important MANET routing protocols: Ad hoc On-Demand Distance Vector (AODV), Dynamic Source Routing (DSR) and Optimized Link State Routing (OLSR) when employed to forward scalable video contents. AODV and DSR are reactive protocols in that routing paths are established once needed. On the other hand, OLSR is a proactive routing protocol where routing information is exchanged and maintained continuously. The goal of the performance evaluation in this study is to assess the performance of AODV, DSR and OLSR in communicating scalable video contents. In the simulation part of this paper, a real video sequence is communicated where the characteristics and quality of the video decoded at receiver nodes are evaluated. NS2 along with extensions and other evaluation frameworks have been used to assess the performance of the MANET routing protocols when used for scalable video communication. The framework allows starting from a raw video that is encoded, packetized, transmitted through a network topology and collected at receiver to be decoded, played, and evaluated. Delay and timing constraints are taken into consideration when decoding the received video packets.展开更多
文摘Mobile Ad-hoc Networks (MANETs) operate without infrastructure where nodes can move randomly. Therefore, routing in MANETs is a challenging task. In this paper we evaluate the performance of three important MANET routing protocols: Ad hoc On-Demand Distance Vector (AODV), Dynamic Source Routing (DSR) and Optimized Link State Routing (OLSR) when employed to forward scalable video contents. AODV and DSR are reactive protocols in that routing paths are established once needed. On the other hand, OLSR is a proactive routing protocol where routing information is exchanged and maintained continuously. The goal of the performance evaluation in this study is to assess the performance of AODV, DSR and OLSR in communicating scalable video contents. In the simulation part of this paper, a real video sequence is communicated where the characteristics and quality of the video decoded at receiver nodes are evaluated. NS2 along with extensions and other evaluation frameworks have been used to assess the performance of the MANET routing protocols when used for scalable video communication. The framework allows starting from a raw video that is encoded, packetized, transmitted through a network topology and collected at receiver to be decoded, played, and evaluated. Delay and timing constraints are taken into consideration when decoding the received video packets.