Improving the accuracy of flood prediction and mapping is crucial for reducing damage resulting from flood events.In this study,we proposed and validated three ensemble models based on the Best First Decision Tree(BFT...Improving the accuracy of flood prediction and mapping is crucial for reducing damage resulting from flood events.In this study,we proposed and validated three ensemble models based on the Best First Decision Tree(BFT)and the Bagging(Bagging-BFT),Decorate(Bagging-BFT),and Random Subspace(RSS-BFT)ensemble learning techniques for an improved prediction of flood susceptibility in a spatially-explicit manner.A total number of 126 historical flood events from the Nghe An Province(Vietnam)were connected to a set of 10 flood influencing factors(slope,elevation,aspect,curvature,river density,distance from rivers,flow direction,geology,soil,and land use)for generating the training and validation datasets.The models were validated via several performance metrics that demonstrated the capability of all three ensemble models in elucidating the underlying pattern of flood occurrences within the research area and predicting the probability of future flood events.Based on the Area Under the receiver operating characteristic Curve(AUC),the ensemble Decorate-BFT model that achieved an AUC value of 0.989 was identified as the superior model over the RSS-BFT(AUC=0.982)and Bagging-BFT(AUC=0.967)models.A comparison between the performance of the models and the models previously reported in the literature confirmed that our ensemble models provided a reliable estimate of flood susceptibilities and their resulting susceptibility maps are trustful for flood early warning systems as well as development of mitigation plans.展开更多
The groundwater potential map is an important tool for a sustainable water management and land use planning,particularly for agricultural countries like Vietnam.In this article,we proposed new machine learning ensembl...The groundwater potential map is an important tool for a sustainable water management and land use planning,particularly for agricultural countries like Vietnam.In this article,we proposed new machine learning ensemble techniques namely AdaBoost ensemble(ABLWL),Bagging ensemble(BLWL),Multi Boost ensemble(MBLWL),Rotation Forest ensemble(RFLWL)with Locally Weighted Learning(LWL)algorithm as a base classifier to build the groundwater potential map of Gia Lai province in Vietnam.For this study,eleven conditioning factors(aspect,altitude,curvature,slope,Stream Transport Index(STI),Topographic Wetness Index(TWI),soil,geology,river density,rainfall,land-use)and 134 wells yield data was used to create training(70%)and testing(30%)datasets for the development and validation of the models.Several statistical indices were used namely Positive Predictive Value(PPV),Negative Predictive Value(NPV),Sensitivity(SST),Specificity(SPF),Accuracy(ACC),Kappa,and Receiver Operating Characteristics(ROC)curve to validate and compare performance of models.Results show that performance of all the models is good to very good(AUC:0.75 to 0.829)but the ABLWL model with AUC=0.89 is the best.All the models applied in this study can support decision-makers to streamline the management of the groundwater and to develop economy not only of specific territories but also in other regions across the world with minor changes of the input parameters.展开更多
Doping control has been a key challenge for electronic applications of van der Waals materials.Here,we demonstrate complementary doping of black phosphorus using controlled ionic intercalation to achieve monolithic bu...Doping control has been a key challenge for electronic applications of van der Waals materials.Here,we demonstrate complementary doping of black phosphorus using controlled ionic intercalation to achieve monolithic building elements.We characterize the anisotropic electrical transport as a function of ion concentrations and report a widely tunable resistivity up to three orders of magnitude with characteristic concentration dependence corresponding to phase transitions during intercalation.As a further step,we develop both p-type and n-type field effect transistors as well as electrical diodes with high device stability and performance.In addition,enhanced charge mobility from 380 to 820 cm^2/(V·s)with the intercalation process is observed and explained as the suppressed neutral impurity scattering based on our ab initio calculations.Our study provides a unique approach to atomically control the electrical properties of van der Waals materials,and may open up new opportunities in developing advanced electronics and physics platforms.展开更多
In this paper,we developed highly accurate ensemble machine learning models integrating Reduced Error Pruning Tree(REPT)as a base classifier with the Bagging(B),Decorate(D),and Random Subspace(RSS)ensemble learning te...In this paper,we developed highly accurate ensemble machine learning models integrating Reduced Error Pruning Tree(REPT)as a base classifier with the Bagging(B),Decorate(D),and Random Subspace(RSS)ensemble learning techniques for spatial prediction of rainfallinduced landslides in the Uttarkashi district,located in the Himalayan range,India.To do so,a total of 103 historical landslide events were linked to twelve conditioning factors for generating training and validation datasets.Root Mean Square Error(RMSE)and Area Under the receiver operating characteristic Curve(AUC)were used to evaluate the training and validation performances of the models.The results showed that the single REPT model and its derived ensembles provided a satisfactory accuracy for the prediction of landslides.The D-REPT model with RMSE=0.351 and AUC=0.907 was identified as the most accurate model,followed by RSS-REPT(RMSE=0.353 and AUC=0.898),B-REPT(RMSE=0.396 and AUC=0.876),and the single REPT model(RMSE=0.398 and AUC=0.836),respectively.The prominent ensemble models proposed and verified in this study provide engineers and modelers with insights for development of more advanced predictive models for different landslide-susceptible areas around the world.展开更多
基金funding from the Vietnam National Foundation for Science and Technology Development(NAFOSTED)under Grant No.105.08-2019.03。
文摘Improving the accuracy of flood prediction and mapping is crucial for reducing damage resulting from flood events.In this study,we proposed and validated three ensemble models based on the Best First Decision Tree(BFT)and the Bagging(Bagging-BFT),Decorate(Bagging-BFT),and Random Subspace(RSS-BFT)ensemble learning techniques for an improved prediction of flood susceptibility in a spatially-explicit manner.A total number of 126 historical flood events from the Nghe An Province(Vietnam)were connected to a set of 10 flood influencing factors(slope,elevation,aspect,curvature,river density,distance from rivers,flow direction,geology,soil,and land use)for generating the training and validation datasets.The models were validated via several performance metrics that demonstrated the capability of all three ensemble models in elucidating the underlying pattern of flood occurrences within the research area and predicting the probability of future flood events.Based on the Area Under the receiver operating characteristic Curve(AUC),the ensemble Decorate-BFT model that achieved an AUC value of 0.989 was identified as the superior model over the RSS-BFT(AUC=0.982)and Bagging-BFT(AUC=0.967)models.A comparison between the performance of the models and the models previously reported in the literature confirmed that our ensemble models provided a reliable estimate of flood susceptibilities and their resulting susceptibility maps are trustful for flood early warning systems as well as development of mitigation plans.
基金funded by Vietnam National Foundation for Science and Technology Development(NAFOSTED)under grant number 105.08-2019.03.
文摘The groundwater potential map is an important tool for a sustainable water management and land use planning,particularly for agricultural countries like Vietnam.In this article,we proposed new machine learning ensemble techniques namely AdaBoost ensemble(ABLWL),Bagging ensemble(BLWL),Multi Boost ensemble(MBLWL),Rotation Forest ensemble(RFLWL)with Locally Weighted Learning(LWL)algorithm as a base classifier to build the groundwater potential map of Gia Lai province in Vietnam.For this study,eleven conditioning factors(aspect,altitude,curvature,slope,Stream Transport Index(STI),Topographic Wetness Index(TWI),soil,geology,river density,rainfall,land-use)and 134 wells yield data was used to create training(70%)and testing(30%)datasets for the development and validation of the models.Several statistical indices were used namely Positive Predictive Value(PPV),Negative Predictive Value(NPV),Sensitivity(SST),Specificity(SPF),Accuracy(ACC),Kappa,and Receiver Operating Characteristics(ROC)curve to validate and compare performance of models.Results show that performance of all the models is good to very good(AUC:0.75 to 0.829)but the ABLWL model with AUC=0.89 is the best.All the models applied in this study can support decision-makers to streamline the management of the groundwater and to develop economy not only of specific territories but also in other regions across the world with minor changes of the input parameters.
基金Y.H.acknowledges support from a CAREER award from the National Science Foundation under grant DMR-1753393,an Alfred P Sloan Research Fellowship under grant FG-2019-1178&a Young Investigator Award from the US Air Force Office of Scientific Research under grant FA9550-17-1-0149,a Doctoral New Investigator Award from the American Chemical Society Petroleum Research Fund under grant 58206-DNI5,as well as from the UCLA Sustainable LA Grand Challenge and the Anthony and Jeanne Pritzker Family Foundation.This work used the Extreme Science and Engineering Discovery Environment(XSEDE),which is supported by National Science Foundation grant number ACI-1548562.Specifically,it used the Bridges system,which is supported by NSF award number ACI-1445606,at the Pittsburgh Supercomputing Center(PSC).
文摘Doping control has been a key challenge for electronic applications of van der Waals materials.Here,we demonstrate complementary doping of black phosphorus using controlled ionic intercalation to achieve monolithic building elements.We characterize the anisotropic electrical transport as a function of ion concentrations and report a widely tunable resistivity up to three orders of magnitude with characteristic concentration dependence corresponding to phase transitions during intercalation.As a further step,we develop both p-type and n-type field effect transistors as well as electrical diodes with high device stability and performance.In addition,enhanced charge mobility from 380 to 820 cm^2/(V·s)with the intercalation process is observed and explained as the suppressed neutral impurity scattering based on our ab initio calculations.Our study provides a unique approach to atomically control the electrical properties of van der Waals materials,and may open up new opportunities in developing advanced electronics and physics platforms.
文摘In this paper,we developed highly accurate ensemble machine learning models integrating Reduced Error Pruning Tree(REPT)as a base classifier with the Bagging(B),Decorate(D),and Random Subspace(RSS)ensemble learning techniques for spatial prediction of rainfallinduced landslides in the Uttarkashi district,located in the Himalayan range,India.To do so,a total of 103 historical landslide events were linked to twelve conditioning factors for generating training and validation datasets.Root Mean Square Error(RMSE)and Area Under the receiver operating characteristic Curve(AUC)were used to evaluate the training and validation performances of the models.The results showed that the single REPT model and its derived ensembles provided a satisfactory accuracy for the prediction of landslides.The D-REPT model with RMSE=0.351 and AUC=0.907 was identified as the most accurate model,followed by RSS-REPT(RMSE=0.353 and AUC=0.898),B-REPT(RMSE=0.396 and AUC=0.876),and the single REPT model(RMSE=0.398 and AUC=0.836),respectively.The prominent ensemble models proposed and verified in this study provide engineers and modelers with insights for development of more advanced predictive models for different landslide-susceptible areas around the world.