期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
The Effect of Fabrication Conditions for GDC Buffer Layer on Electrochemical Performance of Solid Oxide Fuel Cells 被引量:2
1
作者 Jung-Hoon Song Myung Geun Jung +1 位作者 hye won park Hyung-Tae Lim 《Nano-Micro Letters》 SCIE EI CAS 2013年第3期151-158,共8页
A Gd-doped ceria(GDC) buffer layer is required between a conventional yttria-stabilized zirconia(YSZ) electrolyte and a La-Sr-Co-Fe-O3(LSCF) cathode to prevent their chemical reaction. In this study,the effect o... A Gd-doped ceria(GDC) buffer layer is required between a conventional yttria-stabilized zirconia(YSZ) electrolyte and a La-Sr-Co-Fe-O3(LSCF) cathode to prevent their chemical reaction. In this study,the effect of varying the conditions for fabricating the GDC buffer layer, such as sintering temperature and amount of sintering aid, on the solid oxide fuel cell(SOFC) performance was investigated. A finer GDC powder(i.e., ultra-high surface area), a higher sintering temperature(1290℃), and a larger amount of sintering aid(12%) resulted in improved densification of the buffer layer; however, the electrochemical performance of an anode-supported cell containing this GDC buffer layer was poor. These conflicting results are attributed to the formation of(Zr, Ce)O2 and/or excess cobalt grain boundaries(GBs) at higher sintering temperatures with a large amount of sintering aid(i.e., cobalt oxide). A cell comprising of a cobalt-free GDC buffer layer, which was fabricated using a low-temperature process, had lower cell resistance and higher stability. The results indicate that electrochemical performance and stability of SOFCs strongly depend on fabrication conditions for the GDC buffer layer. 展开更多
关键词 Solid oxide fuel cell(SOFC) Gd-doped ceria Sintering aid Sol-gel spin coating
下载PDF
Single-step Preparation of Nano-homogeneous NiO/YSZ Composite Anode for Solid Oxide Fuel Cells 被引量:1
2
作者 Jung-Hoon Song Mi Young park +1 位作者 hye won park Hyung-Tae Lim 《Nano-Micro Letters》 SCIE EI CAS 2013年第2期111-116,共6页
Homogeneous co-precipitation and hydrothermal treatment were used to prepare nano- and highly dispersed Ni O/YSZ(yttria-stabilized zirconia) composite powders. Composite powders of size less than 100 nm were successfu... Homogeneous co-precipitation and hydrothermal treatment were used to prepare nano- and highly dispersed Ni O/YSZ(yttria-stabilized zirconia) composite powders. Composite powders of size less than 100 nm were successfully prepared. This process did not require separate sintering of the YSZ and Ni O to be used as the raw materials for solid oxide fuel cells. The performance of a cell fabricated using the new powders(max.power density ~0.87 W/cm^2) was higher than that of a cell fabricated using conventional powders(max. power density ~0.73 W/cm^2). Co-precipitation and hydrothermal treatment proved to be very effective processes for reducing cell production costs as well as improving cell performance. 展开更多
关键词 Fuel cells Powder processing ELECTROCHEMISTRY Hydrothermal process NiO/YSZ composite anode
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部