期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
A dynamic infiltration technique to synthesize nanolayered cathodes for high performance and robust solid oxide fuel cells
1
作者 Saeed Ur Rehman Ho-Seon Song +7 位作者 hye-sung kim Muhammad Haseeb Hassan Dong-Woo Joh Rak-Hyun Song Tak-Hyoung Lim Jong-Eun Hong Seok-Joo Park Seung-Bok Lee 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第7期201-210,I0006,共11页
Solution infiltration is a popular technique for the surface modification of solid oxide fuel cell(SOFC)cathodes.However,the synthesis of nanostructured SOFC cathodes by infiltration is a tedious process that often re... Solution infiltration is a popular technique for the surface modification of solid oxide fuel cell(SOFC)cathodes.However,the synthesis of nanostructured SOFC cathodes by infiltration is a tedious process that often requires several infiltration and high temperature(≥500℃)calcination cycles.Moreover,fabricating large-area nanostructured cathodes via infiltration still requires serious attention.Here,we propose a facile and scalable urea assisted ultrasonic spray infiltration technique for nanofabrication of SOFC cathodes.It is demonstrated that by using urea as a precipitating agent,the calcination after each infiltration cycle can be omitted and the next infiltration can be performed just after a drying step(≤100℃).Finally,the precipitates can be converted into a desired catalyst phase in single calcination thus,a nanostructured cathode can be fabricated in a much faster manner.It is also shown that the low calcination temperature of the cathode(≤900℃)can produce highly durable SOFC performance even without employing a Ce_(0.9)Gd_(0.1)O_(2)(GDC)diffusion barrier layer which provides the ease of SOFC fabrication.While coupling with an ultrasonic spray technique,the urea assisted infiltration can be scaled up for any desired cathode area.La_(0.6)Sr_(0.4)Co_(0.2)Fe_(0.8)O_(3) nanolayered cathode was fabricated and it was characterized by scanning electron microscope(SEM),X-ray diffraction(XRD),and transmission electron microscopy(TEM)techniques.SEM showed the formation of a nanolayer cathode just after 5 cycles of the urea assisted infiltration while the XRD and TEM confirmed the phase and stoichiometric uniformity of the 100 nm cathode nanolayer.The effectiveness of the newly developed technique was further verified by the stable operation of a GDC buffer layer free SOFC having an active cathode area of 25 cm^(2) during a 1200 h durability test.The research outcomes propose urea assisted ultrasonic spray infiltration as a facile,scalable,and commercially viable method for the fabrication of durable nanostructured SOFC cathodes. 展开更多
关键词 Solid oxide fuel cell(SOFC) Cathode INFILTRATION NANOLAYER Nanofabrication GDC barrier layer free SOFC
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部