Electrothermal metasurfaces have garneredconsiderable attention owing to their ability to dynamicallycontrol thermal infrared radiation. Although previousstudies were mainly focused on metasurfaces with infiniteunit c...Electrothermal metasurfaces have garneredconsiderable attention owing to their ability to dynamicallycontrol thermal infrared radiation. Although previousstudies were mainly focused on metasurfaces with infiniteunit cells, in practice, the finite-size effect can be a criticaldesign factor for developing thermal metasurfaces withfast response and broad temperature uniformity. Here, westudy the thermal metasurfaces consisting of goldnanorods with a finite array size, which can achieve aresonance close to that of the infinite case with onlyseveral periods. More importantly, such a small footprintdue to the finite array size yields response time down to ananosecond level. Furthermore, the number of the unitcells in the direction perpendicular to the axis of nanorodsis found to be insensitive to the resonance and responsetime;thus, providing a tunable aspect ratio that can boostthe temperature uniformity in the sub-Kelvin level.展开更多
文摘Electrothermal metasurfaces have garneredconsiderable attention owing to their ability to dynamicallycontrol thermal infrared radiation. Although previousstudies were mainly focused on metasurfaces with infiniteunit cells, in practice, the finite-size effect can be a criticaldesign factor for developing thermal metasurfaces withfast response and broad temperature uniformity. Here, westudy the thermal metasurfaces consisting of goldnanorods with a finite array size, which can achieve aresonance close to that of the infinite case with onlyseveral periods. More importantly, such a small footprintdue to the finite array size yields response time down to ananosecond level. Furthermore, the number of the unitcells in the direction perpendicular to the axis of nanorodsis found to be insensitive to the resonance and responsetime;thus, providing a tunable aspect ratio that can boostthe temperature uniformity in the sub-Kelvin level.