Cancer stem cells(CSCs) are maintained by theirsomatic stem cells and are responsible for tumor initiation, chemoresistance, and metastasis. Evidence for the CSCs existence has been reported for a number of human canc...Cancer stem cells(CSCs) are maintained by theirsomatic stem cells and are responsible for tumor initiation, chemoresistance, and metastasis. Evidence for the CSCs existence has been reported for a number of human cancers. The CSC mitochondria have been shown recently to be an important target for cancer treatment, but clinical significance of CSCs and their mitochondria properties remain unclear. Mitochondriatargeted agents are considerably more effective compared to other agents in triggering apoptosis of CSCs, as well as general cancer cells, via mitochondrial dysfunction. Mitochondrial metabolism is altered in cancer cells because of their reliance on glycolytic intermediates, which are normally destined for oxidative phosphorylation. Therefore, inhibiting cancer-specific modifications in mitochondrial metabolism, increasing reactive oxygen species production, or stimulating mitochondrial permeabilization transition could be promising new therapeutic strategies to activate cell death in CSCs as well, as in general cancer cells. This review analyzed mitochondrial function and its potential as a therapeutic target to induce cell death in CSCs. Furthermore, combined treatment with mitochondriatargeted drugs will be a promising strategy for the treatment of relapsed and refractory cancer.展开更多
BACKGROUND Pluripotent stem cell-derived cardiomyocytes(CMs) have become one of the most attractive cellular resources for cell-based therapy to rescue damaged cardiac tissue.AIM We investigated the regenerative poten...BACKGROUND Pluripotent stem cell-derived cardiomyocytes(CMs) have become one of the most attractive cellular resources for cell-based therapy to rescue damaged cardiac tissue.AIM We investigated the regenerative potential of mouse embryonic stem cell(ESC)-derived platelet-derived growth factor receptor-α(PDGFRα)+ cardiac lineagecommitted cells(CLCs), which have a proliferative capacity but are in a morphologically and functionally immature state compared with differentiated CMs.METHODSWe induced mouse ESCs into PDGFRα+ CLCs and αMHC+ CMs using a combination of the small molecule cyclosporin A, the rho-associated coiled-coil kinase inhibitor Y27632, the antioxidant Trolox, and the ALK5 inhibitor EW7197.We implanted PDGFRα+ CLCs and differentiated αMHC+ CMs into a myocardial infarction(MI) murine model and performed functional analysis using transthoracic echocardiography(TTE) and histologic analysis.RESULTS Compared with the untreated MI hearts, the anterior and septal regional wall motion and systolic functional parameters were notably and similarly improved in the MI hearts implanted with PDGFRα+ CLCs and αMHC+ CMs based on TTE.In histologic analysis, the untreated MI hearts contained a thinner ventricular wall than did the controls, while the ventricular walls of MI hearts implanted with PDGFRα+ CLCs and αMHC+ CMs were similarly thicker compared with that of the untreated MI hearts. Furthermore, implanted PDGFRα+ CLCs aligned and integrated with host CMs and were mostly differentiated into α-actinin+ CMs,and they did not convert into CD31+ endothelial cells or αSMA+ mural cells.CONCLUSION PDGFRα+ CLCs from mouse ESCs exhibiting proliferative capacity showed a regenerative effect in infarcted myocardium. Therefore, mouse ESC-derived PDGFRα+ CLCs may represent a potential cellular resource for cardiac regeneration.展开更多
基金Supported by A grant from a Priority Research Centers Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education,Science and Technology,No.2010-0020224a Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education,Science and Technology,No.2012R1A1A2041700
文摘Cancer stem cells(CSCs) are maintained by theirsomatic stem cells and are responsible for tumor initiation, chemoresistance, and metastasis. Evidence for the CSCs existence has been reported for a number of human cancers. The CSC mitochondria have been shown recently to be an important target for cancer treatment, but clinical significance of CSCs and their mitochondria properties remain unclear. Mitochondriatargeted agents are considerably more effective compared to other agents in triggering apoptosis of CSCs, as well as general cancer cells, via mitochondrial dysfunction. Mitochondrial metabolism is altered in cancer cells because of their reliance on glycolytic intermediates, which are normally destined for oxidative phosphorylation. Therefore, inhibiting cancer-specific modifications in mitochondrial metabolism, increasing reactive oxygen species production, or stimulating mitochondrial permeabilization transition could be promising new therapeutic strategies to activate cell death in CSCs as well, as in general cancer cells. This review analyzed mitochondrial function and its potential as a therapeutic target to induce cell death in CSCs. Furthermore, combined treatment with mitochondriatargeted drugs will be a promising strategy for the treatment of relapsed and refractory cancer.
基金Supported by Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education,No.2017R1D1A3B03034465the 2017 Inje University research grantPriority Research Centers Program through the NRF funded by the Ministry of Education,Science,and Technology,No.2010-0020224
文摘BACKGROUND Pluripotent stem cell-derived cardiomyocytes(CMs) have become one of the most attractive cellular resources for cell-based therapy to rescue damaged cardiac tissue.AIM We investigated the regenerative potential of mouse embryonic stem cell(ESC)-derived platelet-derived growth factor receptor-α(PDGFRα)+ cardiac lineagecommitted cells(CLCs), which have a proliferative capacity but are in a morphologically and functionally immature state compared with differentiated CMs.METHODSWe induced mouse ESCs into PDGFRα+ CLCs and αMHC+ CMs using a combination of the small molecule cyclosporin A, the rho-associated coiled-coil kinase inhibitor Y27632, the antioxidant Trolox, and the ALK5 inhibitor EW7197.We implanted PDGFRα+ CLCs and differentiated αMHC+ CMs into a myocardial infarction(MI) murine model and performed functional analysis using transthoracic echocardiography(TTE) and histologic analysis.RESULTS Compared with the untreated MI hearts, the anterior and septal regional wall motion and systolic functional parameters were notably and similarly improved in the MI hearts implanted with PDGFRα+ CLCs and αMHC+ CMs based on TTE.In histologic analysis, the untreated MI hearts contained a thinner ventricular wall than did the controls, while the ventricular walls of MI hearts implanted with PDGFRα+ CLCs and αMHC+ CMs were similarly thicker compared with that of the untreated MI hearts. Furthermore, implanted PDGFRα+ CLCs aligned and integrated with host CMs and were mostly differentiated into α-actinin+ CMs,and they did not convert into CD31+ endothelial cells or αSMA+ mural cells.CONCLUSION PDGFRα+ CLCs from mouse ESCs exhibiting proliferative capacity showed a regenerative effect in infarcted myocardium. Therefore, mouse ESC-derived PDGFRα+ CLCs may represent a potential cellular resource for cardiac regeneration.