A facile and scalable lithography-free fabrication technique,named solution-processable electrode-material embedding in dynamically inscribed nanopatterns(SPEEDIN),is developed to produce highly durable electronics.SP...A facile and scalable lithography-free fabrication technique,named solution-processable electrode-material embedding in dynamically inscribed nanopatterns(SPEEDIN),is developed to produce highly durable electronics.SPEEDIN uniquely utilizes a single continuous flow-line manufacturing process comprised of dynamic nanoinscribing and metal nanoparticle solution coating with selective embedding.Nano-and/or micro-trenches are inscribed into arbitrary polymers,and then an Ag nanoparticle solution is dispersed,soft-baked,doctor-bladed,and hard-baked to embed Ag micro-and nanowire structures into the trenches.Compared to lithographically embossed metal structures,the embedded SPEEDIN architectures can achieve higher durability with comparable optical and electrical properties and are robust and power-efficient even under extreme stresses such as scratching and bending.As one tangible application of SPEEDIN,we demonstrate a flexible metal electrode that can operate at 5 V at temperatures up to 300℃even under the influence of harsh external stimuli.SPEEDIN can be applied to the scalable fabrication of diverse flexible devices that are reliable for heavy-duty operation in harsh environments involving high temperatures,mechanical deformations,and chemical hazards.展开更多
基金the National Research Foundation(NRF)grant(NRF-2015R1A5A1037668)funded by Ministry of Science and ICT of the Korean government.
文摘A facile and scalable lithography-free fabrication technique,named solution-processable electrode-material embedding in dynamically inscribed nanopatterns(SPEEDIN),is developed to produce highly durable electronics.SPEEDIN uniquely utilizes a single continuous flow-line manufacturing process comprised of dynamic nanoinscribing and metal nanoparticle solution coating with selective embedding.Nano-and/or micro-trenches are inscribed into arbitrary polymers,and then an Ag nanoparticle solution is dispersed,soft-baked,doctor-bladed,and hard-baked to embed Ag micro-and nanowire structures into the trenches.Compared to lithographically embossed metal structures,the embedded SPEEDIN architectures can achieve higher durability with comparable optical and electrical properties and are robust and power-efficient even under extreme stresses such as scratching and bending.As one tangible application of SPEEDIN,we demonstrate a flexible metal electrode that can operate at 5 V at temperatures up to 300℃even under the influence of harsh external stimuli.SPEEDIN can be applied to the scalable fabrication of diverse flexible devices that are reliable for heavy-duty operation in harsh environments involving high temperatures,mechanical deformations,and chemical hazards.