The objective of this work is to compare the tool performance of TiN and TiA1N coated carbides end-mills deposited by an arc ion plating (ALP) method, using honing treatment to polish the cutting edge surface sleekl...The objective of this work is to compare the tool performance of TiN and TiA1N coated carbides end-mills deposited by an arc ion plating (ALP) method, using honing treatment to polish the cutting edge surface sleekly. The curve of surface roughness versus honing time showed a rapid improvement initially and thereafter became steady, manifesting a saturation effect. The optimal honing time related to surface roughness was determined to be approximately 20 s. As the surface roughness increased, the critical loads reduced. At an average surface roughness (Ra) of 0.028 p.m, the highest critical loads of TiN and TiAlN coating layers were 98 and 114 N, respectively. Tool performances of uncoated and coated tools were conducted under high speed machining (HSM) of AISI D2 cold-worked die steel (62 HRC). Consequently, the TiAlN coated end-mill using honing treatment showed excellent tool life under HSM conditions.展开更多
The characteristic evaluation of aluminum oxide (A1203)/carbon nanotubes (CNTs) hybrid composites for micro-electrical discharge machining (EDM) was described. Alumina matrix composites reinforced with CNTs were...The characteristic evaluation of aluminum oxide (A1203)/carbon nanotubes (CNTs) hybrid composites for micro-electrical discharge machining (EDM) was described. Alumina matrix composites reinforced with CNTs were fabricated by a catalytic chemical vapor deposition method. A1203 composites with different CNT concentrations were synthesized. The electrical characteristic of A1203/CNTs composites was examined. These composites were machined by the EDM process according to the various EDM parameters, and the characteristics of machining were analyzed using field emission scanning electron microscope (FESEM). The electrical conductivity has a increasing tendency as the CNTs content is increased and has a critical point at 5% A1203 (volume fraction). In the machining accuracy, many tangles of CNT in A1203/CNTs composites cause violent spark. Thus, it causes the poor dimensional accuracy and circularity. The results show that conductivity of the materials and homogeneous distribution of CNTs in the matrix are important factors for micro-EDM of A1203/CNTs hybrid composites.展开更多
A novel burning technique for making a semiconducting single-walled carbon nanotubes (SWNTs) transistor assembled by the dielectrophoretic force was suggested. The fabrication process consisted of two steps. First, ...A novel burning technique for making a semiconducting single-walled carbon nanotubes (SWNTs) transistor assembled by the dielectrophoretic force was suggested. The fabrication process consisted of two steps. First, to align and attach a bundle of SWNTs between the source and drain, the alternating (AC) voltage was applied to the electrodes. When a bundle of SWNTs was connected between two electrodes, some of metallic nanotubes and semi-conducing nanotubes existed together. The second step is to burn the metallic SWNTS by applying the voltage between two electrodes. With increasing the voltage, more current flowed through the metallic SWNTs, thus, the metallic SWNTs burnt earlier than the semiconducting one. This technique enables to obtain only semi-conducting SWNTs connection in the transistor. Through the 1--V characteristic graph, the moment of metallic SWNTs burning and the characteristic of semi-conducing nanotubes were verified.展开更多
The distribution of electric field for the alignment and attachment of carbon nanotubes (CNTs) was simulated. To be attached at the desired place, the aligned and attracted CNTs should be stayed in the desired area ca...The distribution of electric field for the alignment and attachment of carbon nanotubes (CNTs) was simulated. To be attached at the desired place, the aligned and attracted CNTs should be stayed in the desired area called the stable region or the quasi-stable region for an instant where the change of electric field is minimized. Since the conical electrode has the very narrow sized quasi-stable region, few CNTs can be attached. The rectangular electrodes have a wide stable region, so lots of CNTs can be attached. The results indicate that the round electrode which has a proper sized quasi-stable region is more effective for aligning and attaching a single CNT than the conical or rectangular shaped electrodes.展开更多
The etching effect of ammonia (NH3) on the growth of vertically aligned nanotubes/nanofibers (CNTs) was investigated by direct-current plasma enhanced chemical vapor deposition (DC-PECVD). NH3 gas etches Ni cata...The etching effect of ammonia (NH3) on the growth of vertically aligned nanotubes/nanofibers (CNTs) was investigated by direct-current plasma enhanced chemical vapor deposition (DC-PECVD). NH3 gas etches Ni catalyst layer to form nanoscale islands while NH3 plasma etches the deposited amorphous carbon. Based on the etching effect of NH3 gas on Ni catalyst, the differences of growing bundles of CNTs and single strand CNTs were discussed; specifically, the amount of optimal NH3 gas etching is different between bundles of CNTs and single strand CNTs. In contrast to the CNT carpet growth, the single strand CNT growth requires shorter etching time (5 min) than large catalytic patterns (10 rain) since nano dots already form catalyst islands for CNT growth. Through removing the plasma pretreatment process, the damage from being exposed at high temperature substrate occurring during the plasma generation time is minimized. High resolution transmission electron microscopy (HTEM) shows fishbone structure of CNTs grown by PECVD.展开更多
The distribution effect of electric field on the alignment and attachment of carbon nanotubes (CNTs) were investigated. The experimental results were compared with the simulation results according to three different...The distribution effect of electric field on the alignment and attachment of carbon nanotubes (CNTs) were investigated. The experimental results were compared with the simulation results according to three different shaped electrodes. In previous simulation, the round shaped electrodes were expected to be more effective for aligning and attaching a single CNT between two electrodes than conical or rectangular shaped electrodes. To verify the simulation results, three different shaped electrodes were introduced and a single multi-walled carbon nanotube (MWNT) was attached. The optimal conditions for aligning and attaching MWNTs such as the frequency, applied voltage and concentration of MWNTs solution were investigated. Through repeated experiments, frequency of 100 kHz-10 MHz, applied voltage of 0.3-1.3 V^s/~m, concentration of 5 ktg/mL in MWNTs solution were obtained as a possible condition range to attach MWNTs. Under these conditions, the yield of MWNTs attachment between two electrodes was up to 70%. In previous simulation, furthermore, it was verified that the size of the stable or quasi-stable region made CNTs aligned and attached on different shaped electrodes from the comparison of the experimental and simulation results. Most single MWNT attachment was accomplished on the round shaped electrodes.展开更多
基金Project(2010-0008-277) supported by NCRC Program through the National Research Foundation of Korea funded by the Ministry of Education, Science and TechnologyProject supported by Pusan National University Research Grant, Korea
文摘The objective of this work is to compare the tool performance of TiN and TiA1N coated carbides end-mills deposited by an arc ion plating (ALP) method, using honing treatment to polish the cutting edge surface sleekly. The curve of surface roughness versus honing time showed a rapid improvement initially and thereafter became steady, manifesting a saturation effect. The optimal honing time related to surface roughness was determined to be approximately 20 s. As the surface roughness increased, the critical loads reduced. At an average surface roughness (Ra) of 0.028 p.m, the highest critical loads of TiN and TiAlN coating layers were 98 and 114 N, respectively. Tool performances of uncoated and coated tools were conducted under high speed machining (HSM) of AISI D2 cold-worked die steel (62 HRC). Consequently, the TiAlN coated end-mill using honing treatment showed excellent tool life under HSM conditions.
基金Project(2010-0008-277) supported by Program of Establishment of an Infrastructure for Public Usepartly by NCRC (National Core Research Center) through the National Research Foundation of Korea funded by the Ministry of Education
文摘The characteristic evaluation of aluminum oxide (A1203)/carbon nanotubes (CNTs) hybrid composites for micro-electrical discharge machining (EDM) was described. Alumina matrix composites reinforced with CNTs were fabricated by a catalytic chemical vapor deposition method. A1203 composites with different CNT concentrations were synthesized. The electrical characteristic of A1203/CNTs composites was examined. These composites were machined by the EDM process according to the various EDM parameters, and the characteristics of machining were analyzed using field emission scanning electron microscope (FESEM). The electrical conductivity has a increasing tendency as the CNTs content is increased and has a critical point at 5% A1203 (volume fraction). In the machining accuracy, many tangles of CNT in A1203/CNTs composites cause violent spark. Thus, it causes the poor dimensional accuracy and circularity. The results show that conductivity of the materials and homogeneous distribution of CNTs in the matrix are important factors for micro-EDM of A1203/CNTs hybrid composites.
基金Project (2010-0008-276) supported for two years by Pusan National University Research GrantNCRC(National Core Research Center) through the National Research Foundation of Korea funded by the Ministry of Education, Science and TechnologyPusan National University Research Grant, 2009
文摘A novel burning technique for making a semiconducting single-walled carbon nanotubes (SWNTs) transistor assembled by the dielectrophoretic force was suggested. The fabrication process consisted of two steps. First, to align and attach a bundle of SWNTs between the source and drain, the alternating (AC) voltage was applied to the electrodes. When a bundle of SWNTs was connected between two electrodes, some of metallic nanotubes and semi-conducing nanotubes existed together. The second step is to burn the metallic SWNTS by applying the voltage between two electrodes. With increasing the voltage, more current flowed through the metallic SWNTs, thus, the metallic SWNTs burnt earlier than the semiconducting one. This technique enables to obtain only semi-conducting SWNTs connection in the transistor. Through the 1--V characteristic graph, the moment of metallic SWNTs burning and the characteristic of semi-conducing nanotubes were verified.
基金Project supported by the Pusan National University Research GrantProject(2010-0008-276) supported by NCRC (National Core Research Center) through the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology
文摘The distribution of electric field for the alignment and attachment of carbon nanotubes (CNTs) was simulated. To be attached at the desired place, the aligned and attracted CNTs should be stayed in the desired area called the stable region or the quasi-stable region for an instant where the change of electric field is minimized. Since the conical electrode has the very narrow sized quasi-stable region, few CNTs can be attached. The rectangular electrodes have a wide stable region, so lots of CNTs can be attached. The results indicate that the round electrode which has a proper sized quasi-stable region is more effective for aligning and attaching a single CNT than the conical or rectangular shaped electrodes.
基金Project supported by Intelligent Microsystem Center(IMC)Project(2010-0008-276) supported by the National Core Research Center through the National Research Foundation of Korea funded by the Ministry of Education, Science and TechnologyProject(2010) supported by Pusan National University
文摘The etching effect of ammonia (NH3) on the growth of vertically aligned nanotubes/nanofibers (CNTs) was investigated by direct-current plasma enhanced chemical vapor deposition (DC-PECVD). NH3 gas etches Ni catalyst layer to form nanoscale islands while NH3 plasma etches the deposited amorphous carbon. Based on the etching effect of NH3 gas on Ni catalyst, the differences of growing bundles of CNTs and single strand CNTs were discussed; specifically, the amount of optimal NH3 gas etching is different between bundles of CNTs and single strand CNTs. In contrast to the CNT carpet growth, the single strand CNT growth requires shorter etching time (5 min) than large catalytic patterns (10 rain) since nano dots already form catalyst islands for CNT growth. Through removing the plasma pretreatment process, the damage from being exposed at high temperature substrate occurring during the plasma generation time is minimized. High resolution transmission electron microscopy (HTEM) shows fishbone structure of CNTs grown by PECVD.
基金Project supported by Pusan National University Research Grant, KoreaProject(2010-0008-276) supported by NCRC (National Core Research Center) through the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology
文摘The distribution effect of electric field on the alignment and attachment of carbon nanotubes (CNTs) were investigated. The experimental results were compared with the simulation results according to three different shaped electrodes. In previous simulation, the round shaped electrodes were expected to be more effective for aligning and attaching a single CNT between two electrodes than conical or rectangular shaped electrodes. To verify the simulation results, three different shaped electrodes were introduced and a single multi-walled carbon nanotube (MWNT) was attached. The optimal conditions for aligning and attaching MWNTs such as the frequency, applied voltage and concentration of MWNTs solution were investigated. Through repeated experiments, frequency of 100 kHz-10 MHz, applied voltage of 0.3-1.3 V^s/~m, concentration of 5 ktg/mL in MWNTs solution were obtained as a possible condition range to attach MWNTs. Under these conditions, the yield of MWNTs attachment between two electrodes was up to 70%. In previous simulation, furthermore, it was verified that the size of the stable or quasi-stable region made CNTs aligned and attached on different shaped electrodes from the comparison of the experimental and simulation results. Most single MWNT attachment was accomplished on the round shaped electrodes.