期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Implanting a preferential solid electrolyte interphase layer over anode electrode of lithium ion batteries for highly enhanced Li^+ diffusion properties 被引量:1
1
作者 Ye Kyu Kim Yoongon Kim +4 位作者 Jaejin Bae Hyunwoo Ahn Yuseong Noh Hyunsu Han Won Bae Kim 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第9期285-292,I0009,共9页
The lithium-ion batteries are recognized as the most promising energy storage system,but it still does not meet the power requirements of electric vehicle batteries owing to low volumetric energy density with the trad... The lithium-ion batteries are recognized as the most promising energy storage system,but it still does not meet the power requirements of electric vehicle batteries owing to low volumetric energy density with the traditional graphite electrode system.In this study,we report the development of a novel electrode system fabricated by implantation of a solid electrolyte interphase(SEI)layer on the graphite surface.The SEI-implanted graphite electrode is made using a lithium bis(trifluoromethanesulfonyl)imide(LiTFSI)-based electrolyte and cycled with a lithium tetrafluoroborate LiBF4-based electrolyte.This new electrode system shows significantly enhanced electrochemical properties owing to the rapid and efficient diffusion of Li ions through the SEI layer between the electrolyte and electrode.This graphite electrode with its pre-formed SEI layer achieves a reversible capacity of 357 mAh g^-1 at 0.5 C after 50 cycles,which is significantly higher than that of commercial lithium-ion battery systems constructed with LiPF6(312mAh g^-1).The resulting unique electrode system could present a new avenue in SEI research for highperformance lithium-ion batteries. 展开更多
关键词 SEI layer GRAPHITE Implanting Li ion diffusion LITFSI LiBF4 Artificial MOBILITY
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部