We experimentally demonstrate an underwater optical wireless power transfer (OWPT) using a laser diode (LD) as a power transmitter. We investigate the characteristics of a solar cell and a photodiode (PD) as a p...We experimentally demonstrate an underwater optical wireless power transfer (OWPT) using a laser diode (LD) as a power transmitter. We investigate the characteristics of a solar cell and a photodiode (PD) as a power receiver. We optimize the LD, the PD, and the solar cell to achieve the maximum transfer efficiency. The maxi- mum transfer efficiency of the back-to-back OWPT is measured as 4.3% with the PD receiver. Subsequently, we demonstrate the OWPT in tap and sea water. Our result shows an attenuation of 3 dB/m in sea water.展开更多
基金supported by the Kyungsung University Research Grants in 2017
文摘We experimentally demonstrate an underwater optical wireless power transfer (OWPT) using a laser diode (LD) as a power transmitter. We investigate the characteristics of a solar cell and a photodiode (PD) as a power receiver. We optimize the LD, the PD, and the solar cell to achieve the maximum transfer efficiency. The maxi- mum transfer efficiency of the back-to-back OWPT is measured as 4.3% with the PD receiver. Subsequently, we demonstrate the OWPT in tap and sea water. Our result shows an attenuation of 3 dB/m in sea water.