To determine the solubility of CO_(2)in n-dodecane at T=303.15-353.15 K,P≤11.00 MPa,an integrated fused silica capillary and in-situ Raman spectroscopy system was built.The Raman peak intensity ratio(I_(CO_(2))/IC-H)...To determine the solubility of CO_(2)in n-dodecane at T=303.15-353.15 K,P≤11.00 MPa,an integrated fused silica capillary and in-situ Raman spectroscopy system was built.The Raman peak intensity ratio(I_(CO_(2))/IC-H)between the upper band of CO_(2)Fermi diad(I_(CO_(2)))and the C-H stretching band of n-dodecane(IC-H)was employed to determine the solubility of CO_(2)in n-dodecane based on the calibrated correlation equation between the known CO_(2)molality in n-dodecane and the I_(CO_(2))/IC-Hratio with R^(2)=0.9998.The results indicated that the solubility of CO_(2)decreased with increasing temperature and increased with increasing pressure.The maximum CO_(2)molality(30.7314 mol/kg)was obtained at 303.15 K and7.00 MPa.Finally,a solubility prediction model(lnS=(P-A)/B)based on the relationship with temperature(T in K)and pressure(P in MPa)was developed,where S is CO_(2)molality,A=-8×10^(-6)T^(2)+0.0354T-8.1605,and B=0.0405T-10.756.The results indicated that the solubilities of CO_(2)derived from this model were in good agreement with the experimental data.展开更多
Most economically important tungsten(W)deposits are of magmatic-hydrothermal origin.The species and partitioning of W during fluid exsolution,considered to be the controlling factors for the formation of ore deposits,...Most economically important tungsten(W)deposits are of magmatic-hydrothermal origin.The species and partitioning of W during fluid exsolution,considered to be the controlling factors for the formation of ore deposits,are thus of great significance to investigate.However,this issue has not been well addressed mainly due to the significant difference in reported partition coefficients(e.g.,from strongly incompatible to strongly compatible)between fluid and melt(D_(W)^(fluid/melt)).Here,we used an in situ Raman spectroscopic approach to describe the W speciation,and to quantitatively determine the Dfluid/melt of individual and total W species in granite melts and coexisting Na2WO4 solutions at elevated temperatures(T;700–800C)and pressures(P;0.35–1.08 GPa).Results show that WO_(4)^(2-)and HWO4are predominant W species,and the fractions of these two species are similar in melt and coexisting fluid.The partitioning behaviors of WO_(4)^(2-)and HWO4are comparable,exhibiting strong enrichment in the fluid.The total DW fluid/melt ranges from 8.6 to 37.1.Specifically,DW fluid/melt decreases with rising T–P,indicating that shallow exsolution favors enrichment of W in evolved fluids.Furthermore,Rayleigh fractionation modeling based on the obtained D_(W)^(fluid/melt)data was used to describe the fluid exsolution processes.Our results strongly support that fluid exsolution can serve as an important mechanism to generate W-rich oreforming fluids.This study also indicates that in situ approach can be used to further investigate the geochemical behavior of ore-forming elements during the magmatic-hydrothermal transition,especially for rare metals associated with granite and pegmatite.展开更多
In 2011,through in situ Raman spectroscopic analyses of samples in a high-pressure optical cell(HPOC),called"hydrothermal diamond-anvil cell"(HDAC)[1]the■was recognized as a stable trisulfur radical ion in ...In 2011,through in situ Raman spectroscopic analyses of samples in a high-pressure optical cell(HPOC),called"hydrothermal diamond-anvil cell"(HDAC)[1]the■was recognized as a stable trisulfur radical ion in geological fluids at elevated temperatures(T)and pressures(P)[2].Later,the stability and abundance of this■ion in hydrothermal fluids were further investigated by using another type of HPOC called"fused silica capillary capsule"[3]together with Raman spectroscopy[4].展开更多
基金supported by the National Key Research and Development Program of China(2019YFE0117200)the Natural Science Foundation of China(41977304)
文摘To determine the solubility of CO_(2)in n-dodecane at T=303.15-353.15 K,P≤11.00 MPa,an integrated fused silica capillary and in-situ Raman spectroscopy system was built.The Raman peak intensity ratio(I_(CO_(2))/IC-H)between the upper band of CO_(2)Fermi diad(I_(CO_(2)))and the C-H stretching band of n-dodecane(IC-H)was employed to determine the solubility of CO_(2)in n-dodecane based on the calibrated correlation equation between the known CO_(2)molality in n-dodecane and the I_(CO_(2))/IC-Hratio with R^(2)=0.9998.The results indicated that the solubility of CO_(2)decreased with increasing temperature and increased with increasing pressure.The maximum CO_(2)molality(30.7314 mol/kg)was obtained at 303.15 K and7.00 MPa.Finally,a solubility prediction model(lnS=(P-A)/B)based on the relationship with temperature(T in K)and pressure(P in MPa)was developed,where S is CO_(2)molality,A=-8×10^(-6)T^(2)+0.0354T-8.1605,and B=0.0405T-10.756.The results indicated that the solubilities of CO_(2)derived from this model were in good agreement with the experimental data.
基金supported by the National Natural Science Foundation of China(41922023,41830428,42173038,41973055,and 42130109)the Research Funds for the Frontiers Science Center for Critical Earth Material Cycling(Nanjing University,China)the Fundamental Research Funds for the Central Universities,China(2022300192).
文摘Most economically important tungsten(W)deposits are of magmatic-hydrothermal origin.The species and partitioning of W during fluid exsolution,considered to be the controlling factors for the formation of ore deposits,are thus of great significance to investigate.However,this issue has not been well addressed mainly due to the significant difference in reported partition coefficients(e.g.,from strongly incompatible to strongly compatible)between fluid and melt(D_(W)^(fluid/melt)).Here,we used an in situ Raman spectroscopic approach to describe the W speciation,and to quantitatively determine the Dfluid/melt of individual and total W species in granite melts and coexisting Na2WO4 solutions at elevated temperatures(T;700–800C)and pressures(P;0.35–1.08 GPa).Results show that WO_(4)^(2-)and HWO4are predominant W species,and the fractions of these two species are similar in melt and coexisting fluid.The partitioning behaviors of WO_(4)^(2-)and HWO4are comparable,exhibiting strong enrichment in the fluid.The total DW fluid/melt ranges from 8.6 to 37.1.Specifically,DW fluid/melt decreases with rising T–P,indicating that shallow exsolution favors enrichment of W in evolved fluids.Furthermore,Rayleigh fractionation modeling based on the obtained D_(W)^(fluid/melt)data was used to describe the fluid exsolution processes.Our results strongly support that fluid exsolution can serve as an important mechanism to generate W-rich oreforming fluids.This study also indicates that in situ approach can be used to further investigate the geochemical behavior of ore-forming elements during the magmatic-hydrothermal transition,especially for rare metals associated with granite and pegmatite.
基金supported by the National Natural Science Foundation of China(41973055)the Key Frontier Science Program of the Chinese Academy of Sciences(QYZDY-SSW-DQC008)。
文摘In 2011,through in situ Raman spectroscopic analyses of samples in a high-pressure optical cell(HPOC),called"hydrothermal diamond-anvil cell"(HDAC)[1]the■was recognized as a stable trisulfur radical ion in geological fluids at elevated temperatures(T)and pressures(P)[2].Later,the stability and abundance of this■ion in hydrothermal fluids were further investigated by using another type of HPOC called"fused silica capillary capsule"[3]together with Raman spectroscopy[4].