Soil drying and wetting impose significant influences on soil nitrogen (N) dynamics and microbial communities. However, effects of drying-wetting cycles, while common in vegetable soils, especially under greenhouse co...Soil drying and wetting impose significant influences on soil nitrogen (N) dynamics and microbial communities. However, effects of drying-wetting cycles, while common in vegetable soils, especially under greenhouse conditions, have not been well studied. In this study, two greenhouse vegetable soils, which were collected from Xinji (XJ) and Hangzhou (HZ), China, were maintained at 30% and 75% water-holding capacity (WHC), or five cycles of 75% WHC followed by a 7-day dry-down to 30% WHC (DW). Soil inorganic N content increased during incubation. Net N mineralization (Nmin), microbial activity, and microbial biomass were significantly higher in the DW treatment than in the 30% and 75% WHC treatments. The higher water content (75% WHC) treatment had higher Nmin, microbial activity, and microbial biomass than the lower water content treatment (30% WHC). Multivariate analyses of community-level physiological profile (CLPP) and phospholipid fatty acid (PLFA) data indicated that soil moisture regime had a significant effect on soil microbial community substrate utilization pattern and microbial community composition. The significant positive correlation between Nmin and microbial substrate utilization or PLFAs suggested that soil N mineralization had a close relationship with microbial community.展开更多
Water and nitrogen (N) are considered the most important factors affecting rice production and play vital roles in regulating soil microbial biomass, activity, and community. The effects of irrigation patterns and N...Water and nitrogen (N) are considered the most important factors affecting rice production and play vital roles in regulating soil microbial biomass, activity, and community. The effects of irrigation patterns and N fertilizer levels on the soil microbial community structure and yield of paddy rice were investigated in a pot experiment. The experiment was designed with four N levels of 0 (NO), 126 (N1), 157.5 (N2), and 210 kg N ha^(-1) (N3) under two irrigation patterns of continuous water-logging irrigation (WLI) and water- controlled irrigation (WCI). Phospholipid fatty acid (PLFA) analysis was conducted to track the dynamics of soil microbial communities at tillering, grain-filling, and maturity stages. The results showed that the maximums of grain yield, above-ground biomass, and total N uptake were all obtained in the N2 treatment under WCI. Similar variations in total PLFAs, as well as bacterial and fungM PLFAs, were found, with an increase from the tillering to the grain-filling stage and a decrease at the maturity stage except for actinomycetic PLFAs, which decreased continuously from the tillering to the maturity stage. A shift in composition of the microbial community at different stages of the plant growth was indicated by principal component analysis (PCA), in which the samples at the vegetative stage (tillering stage) were separated from those at the reproductive stage (grain-filling and maturity stages). Soil microbial biomass, measured as total PLFAs, was significantly higher under WCI than that under WLI mainly at the grain-filling stage, whereas the fungal PLFAs detected under WCI were significantly higher than those under WLI at the tillering, grain-filling, and maturity stages. The application of N fertilizer also significantly increased soil microbial biomass and the main microbial groups both under WLI and WCI conditions. The proper combination of irrigation management and N fertilizer level in this study was the N2 (157.5 kg N ha^(-1)) treatment under the water-controlled irrigation pattern.展开更多
基金Supported by the State Key Laboratory of Soil and Sustainable Agriculture, Chinathe National Basic Research Program (973 Program) of China (No. 2007CB109305)+1 种基金the National Natural Science Foundation of China (Nos. 30971859 and 30370840)the International Plant Nutrition Institute (IPNI), USA
文摘Soil drying and wetting impose significant influences on soil nitrogen (N) dynamics and microbial communities. However, effects of drying-wetting cycles, while common in vegetable soils, especially under greenhouse conditions, have not been well studied. In this study, two greenhouse vegetable soils, which were collected from Xinji (XJ) and Hangzhou (HZ), China, were maintained at 30% and 75% water-holding capacity (WHC), or five cycles of 75% WHC followed by a 7-day dry-down to 30% WHC (DW). Soil inorganic N content increased during incubation. Net N mineralization (Nmin), microbial activity, and microbial biomass were significantly higher in the DW treatment than in the 30% and 75% WHC treatments. The higher water content (75% WHC) treatment had higher Nmin, microbial activity, and microbial biomass than the lower water content treatment (30% WHC). Multivariate analyses of community-level physiological profile (CLPP) and phospholipid fatty acid (PLFA) data indicated that soil moisture regime had a significant effect on soil microbial community substrate utilization pattern and microbial community composition. The significant positive correlation between Nmin and microbial substrate utilization or PLFAs suggested that soil N mineralization had a close relationship with microbial community.
基金Supported by the National Basic Research Program (973 Program) of China (No.2007CB109305)the National Natural ScienceFoundation of China (No.3197859)
文摘Water and nitrogen (N) are considered the most important factors affecting rice production and play vital roles in regulating soil microbial biomass, activity, and community. The effects of irrigation patterns and N fertilizer levels on the soil microbial community structure and yield of paddy rice were investigated in a pot experiment. The experiment was designed with four N levels of 0 (NO), 126 (N1), 157.5 (N2), and 210 kg N ha^(-1) (N3) under two irrigation patterns of continuous water-logging irrigation (WLI) and water- controlled irrigation (WCI). Phospholipid fatty acid (PLFA) analysis was conducted to track the dynamics of soil microbial communities at tillering, grain-filling, and maturity stages. The results showed that the maximums of grain yield, above-ground biomass, and total N uptake were all obtained in the N2 treatment under WCI. Similar variations in total PLFAs, as well as bacterial and fungM PLFAs, were found, with an increase from the tillering to the grain-filling stage and a decrease at the maturity stage except for actinomycetic PLFAs, which decreased continuously from the tillering to the maturity stage. A shift in composition of the microbial community at different stages of the plant growth was indicated by principal component analysis (PCA), in which the samples at the vegetative stage (tillering stage) were separated from those at the reproductive stage (grain-filling and maturity stages). Soil microbial biomass, measured as total PLFAs, was significantly higher under WCI than that under WLI mainly at the grain-filling stage, whereas the fungal PLFAs detected under WCI were significantly higher than those under WLI at the tillering, grain-filling, and maturity stages. The application of N fertilizer also significantly increased soil microbial biomass and the main microbial groups both under WLI and WCI conditions. The proper combination of irrigation management and N fertilizer level in this study was the N2 (157.5 kg N ha^(-1)) treatment under the water-controlled irrigation pattern.