synthesisCeramic samples of BiFeO_(3)-based perovskite solid solutions with the highly ordered complex perovskites PbFe_(1/2)Sb_(1/2)O_(3)(PFS)and SrFe_(1/2)Sb_(1/2)O_(3)(SFS)were obtained using high-pressure synthesi...synthesisCeramic samples of BiFeO_(3)-based perovskite solid solutions with the highly ordered complex perovskites PbFe_(1/2)Sb_(1/2)O_(3)(PFS)and SrFe_(1/2)Sb_(1/2)O_(3)(SFS)were obtained using high-pressure synthesis at 4-6 GPa.Mössbauer studies revealed that BiFeO_(3)-SFS compositions are characterized by a larger compositional inhomogeneity as compared to BiFeO_(3)-PFS ones.In line with this result,concentration dependence of the magnetic phase transition temperature TN for BiFeO_(3)-SFS compositions is close to the TN(x)dependence for BiFeO_(3)solid solution with disordered perovskite PbFe_(1/2)Nb_(1/2)O_(3)(PFN).In contrast to this TN(x)dependence for BiFeO_(3)-PFS compositions nicely follows the theoretical TN(x)dependence calculated for the case of the ordered distribution of Fe3+and non-magnetic Sb^(5)+ions in the lattice(chemical ordering).展开更多
0.5AFeO_(3)-0.5NaNbO_(3)(A=Bi,La)solid solution compositions were prepared using a solid phase reaction route from high-purity starting oxides.Mossbauer studies have shown that while for 0.5BiFeO_(3)-0.5NaNbO_(3)the m...0.5AFeO_(3)-0.5NaNbO_(3)(A=Bi,La)solid solution compositions were prepared using a solid phase reaction route from high-purity starting oxides.Mossbauer studies have shown that while for 0.5BiFeO_(3)-0.5NaNbO_(3)the magnetic phase transition temperature T_(M) value is about 150 K,for 0.5LaFeO_(3)-0.5NaNbO_(3),it is only≈25 K.This dramatic difference in T_(M) values seems to be due to additional contribution of the magnetic superexchange between Fe^(3+)ions via the empty 6p-states of Bi^(3+)ions to the overall superexchange.展开更多
基金The reported study was funded by RFBR(Project number 20-52-00045)BRFBR(Project number T20R-169).
文摘synthesisCeramic samples of BiFeO_(3)-based perovskite solid solutions with the highly ordered complex perovskites PbFe_(1/2)Sb_(1/2)O_(3)(PFS)and SrFe_(1/2)Sb_(1/2)O_(3)(SFS)were obtained using high-pressure synthesis at 4-6 GPa.Mössbauer studies revealed that BiFeO_(3)-SFS compositions are characterized by a larger compositional inhomogeneity as compared to BiFeO_(3)-PFS ones.In line with this result,concentration dependence of the magnetic phase transition temperature TN for BiFeO_(3)-SFS compositions is close to the TN(x)dependence for BiFeO_(3)solid solution with disordered perovskite PbFe_(1/2)Nb_(1/2)O_(3)(PFN).In contrast to this TN(x)dependence for BiFeO_(3)-PFS compositions nicely follows the theoretical TN(x)dependence calculated for the case of the ordered distribution of Fe3+and non-magnetic Sb^(5)+ions in the lattice(chemical ordering).
基金This work was supported by RFBR and NSFC,project 19-52-53030 GFEN a and by the Ministry of Education and Science of the Russian Federation(State assignment in the field of scientific activity,Southern Federal University,2020).
文摘0.5AFeO_(3)-0.5NaNbO_(3)(A=Bi,La)solid solution compositions were prepared using a solid phase reaction route from high-purity starting oxides.Mossbauer studies have shown that while for 0.5BiFeO_(3)-0.5NaNbO_(3)the magnetic phase transition temperature T_(M) value is about 150 K,for 0.5LaFeO_(3)-0.5NaNbO_(3),it is only≈25 K.This dramatic difference in T_(M) values seems to be due to additional contribution of the magnetic superexchange between Fe^(3+)ions via the empty 6p-states of Bi^(3+)ions to the overall superexchange.