A two-dimensional periodic array of quantum dots with two laterally coupled leads in a magnetic field is considered. The model of electron transport through the system based on the theory of self-adjoint extensions of...A two-dimensional periodic array of quantum dots with two laterally coupled leads in a magnetic field is considered. The model of electron transport through the system based on the theory of self-adjoint extensions of symmetric operators is suggested. We obtain the formula for the transmission coefficient and investigate its dependence on the magnetic field.展开更多
A problem of nanocatalyst improvement is considered. The existence of irregularities at the surface of nanoparticle leads to the increasing of the surface/volume ratio and, correspondingly, to the improvement of the c...A problem of nanocatalyst improvement is considered. The existence of irregularities at the surface of nanoparticle leads to the increasing of the surface/volume ratio and, correspondingly, to the improvement of the catalytic activity. But this impurity gives one an additional effect due to the change of the electronic density at the surface. We suggest simple model for the description of this effect. The model allows one to find the discrete spectrum of the Schrdinger operator for nanoparticle. Due to this impurity induced bound states the electron density increases near the surface. It leads to the increase of the catalytic activity of nanoparticles with surface impurities.展开更多
基金Project supported by the Federal Targeted Program"Scientific and Educational Human Resources for Innovation-Driven Russia"(Grant Nos. P689 NK-526P,14.740.11.0879,16.740.11.0030,and 2012-1.2.2-12-000-1001-047)the Russian Foundation for Basic Researches (Grant No. 11-08-00267)the Federal Targeted Program "Researches and Development in the Priority Directions Developments of a Scientific and Technological Complex of Russia 2007-2013" (Grant No. 07.514.11.4146)
文摘A two-dimensional periodic array of quantum dots with two laterally coupled leads in a magnetic field is considered. The model of electron transport through the system based on the theory of self-adjoint extensions of symmetric operators is suggested. We obtain the formula for the transmission coefficient and investigate its dependence on the magnetic field.
基金Supported by Federal Targeted Program "Scientific and Educational Human Resources for Innovation-Driven Russia" (contracts P689NK-526P, 14.740.11.0879, and 16.740.11.0030) and grant 11-08-00267 of Russian Foundation for Basic Researchesstate contract SC16.516.11.6073 and by Federal Targeted Program "Researches and Development in the Prioring Directions Developments of a Scientific and Technological Complex of Russia 2007-2013" (state contract 07.514.11.4146)
文摘A problem of nanocatalyst improvement is considered. The existence of irregularities at the surface of nanoparticle leads to the increasing of the surface/volume ratio and, correspondingly, to the improvement of the catalytic activity. But this impurity gives one an additional effect due to the change of the electronic density at the surface. We suggest simple model for the description of this effect. The model allows one to find the discrete spectrum of the Schrdinger operator for nanoparticle. Due to this impurity induced bound states the electron density increases near the surface. It leads to the increase of the catalytic activity of nanoparticles with surface impurities.