Wolbachia are a group of intracellular bacteria, ma-ternally transmitted from infected females to their offspring, which affect a wide range of arthropods. Their presence is associated with Cytoplasmic Incompatibility...Wolbachia are a group of intracellular bacteria, ma-ternally transmitted from infected females to their offspring, which affect a wide range of arthropods. Their presence is associated with Cytoplasmic Incompatibility (CI) in crosses between infected males and uninfected females and between populations carrying different strains of Wolbachia. The negative influence of Wolbachia a infection on progeny fitness in incompatible crosses can be considered a first step in the appearance of reproductive isolation between infected and uninfected individuals. In this work, we examined the possibility of assortative mating in response to Wolbachia infection, a response that evolved as an incipient mechanism of sexual isolation in the species D. melanogaster and D. simulans. We found that the females of each species could detect the presence of the bacterium in the other sex and chose to mate with males who had the same state of infection, whereas the males randomly attempted to mate with both infected and uninfected females. Thus, Wolbachia may act as an additive factor influencing sexual isolation in Drosophila populations and may play a role in speciation events.展开更多
文摘Wolbachia are a group of intracellular bacteria, ma-ternally transmitted from infected females to their offspring, which affect a wide range of arthropods. Their presence is associated with Cytoplasmic Incompatibility (CI) in crosses between infected males and uninfected females and between populations carrying different strains of Wolbachia. The negative influence of Wolbachia a infection on progeny fitness in incompatible crosses can be considered a first step in the appearance of reproductive isolation between infected and uninfected individuals. In this work, we examined the possibility of assortative mating in response to Wolbachia infection, a response that evolved as an incipient mechanism of sexual isolation in the species D. melanogaster and D. simulans. We found that the females of each species could detect the presence of the bacterium in the other sex and chose to mate with males who had the same state of infection, whereas the males randomly attempted to mate with both infected and uninfected females. Thus, Wolbachia may act as an additive factor influencing sexual isolation in Drosophila populations and may play a role in speciation events.