Quinoline analogues exhibited diversified biological activities depending on the structure type. A number of natural products with pyrano[3,2-c]quinolone structural motifs and patented chromenes were reported as promi...Quinoline analogues exhibited diversified biological activities depending on the structure type. A number of natural products with pyrano[3,2-c]quinolone structural motifs and patented chromenes were reported as promising cytotoxic agents. A molecular docking study was employed to investigate the binding and functional properties of 3-amino pyranoquinolinone 2a-c as anti-cancer agents. The three 3-amino pyranoquinolinone 2a-c showed an interesting ability to intercalate the DNA-topoisomerase complex and were able to obtain energetically favorable binding modes (−8.3 - −7.5 kcal/mol). Compound 2c containing butyl chain superiority over the other two compounds 2a-b which appeared to be involved in arene-H interactions with the two dG13 aromatic centers. The butyl chain also appeared to be immersed into a side subpocket formed by the side chains of Asn520 and Glu522 and the backbone amide of Arg503, Gly504, Lys505 and Ile506. Hence, the 3-amino pyranoquinolinone 2c used as starting material to prepare derivatives of pyrano[3,2-c]quinolone containing 1,2,4-triazine ring 4a-b which will enhance the anti-cancer activity. Pyrano[3,2-c]quinoline-2,5-diones 2a-c and 4a-b were evaluated in vitro on cell lines Ehrlich Ascites carcinoma cells (EAC), liver cancer cell line Hep-G2 and breast cancer cell line MCF-7 for the development of novel anticancer agents. The screening results revealed that compounds 4a-b were found most active candidates as anticancer agents.展开更多
The peroxisome proliferator activator receptor-<em>γ</em> (PPAR-<em>γ</em>) remained the most effective target for management of diabetes mellitus. The present work endeavors rational designi...The peroxisome proliferator activator receptor-<em>γ</em> (PPAR-<em>γ</em>) remained the most effective target for management of diabetes mellitus. The present work endeavors rational designing new PPAR-<em>γ</em> agonist bearing cyclotriphosphazene and thiazolidine-2,4-dione scaffolds. Thiazolidinedione (TZD) derivatives are the novel class of oral antidiabetic drugs which are selective agonist for the nuclear PPAR<em>γ</em> that enhances the transcription of several insulin responsive genes but TZDs are known to cause weight gain, hepatotoxicity and fluid retention. So, cyclotriphosphazene containing thiazolidine-2,4-dione was designed, synthesized as PPAR<em>γ</em> agonist. The <em>in-vitro</em> antidiabetic activity showed that compound <strong>8</strong> has similar activity and exhibited higher glucose uptake in comparison to pioglitazone as reference drugs. This research opened new avenues for smart designing of molecules with high efficiency towards the management of hyperglycemia.展开更多
文摘Quinoline analogues exhibited diversified biological activities depending on the structure type. A number of natural products with pyrano[3,2-c]quinolone structural motifs and patented chromenes were reported as promising cytotoxic agents. A molecular docking study was employed to investigate the binding and functional properties of 3-amino pyranoquinolinone 2a-c as anti-cancer agents. The three 3-amino pyranoquinolinone 2a-c showed an interesting ability to intercalate the DNA-topoisomerase complex and were able to obtain energetically favorable binding modes (−8.3 - −7.5 kcal/mol). Compound 2c containing butyl chain superiority over the other two compounds 2a-b which appeared to be involved in arene-H interactions with the two dG13 aromatic centers. The butyl chain also appeared to be immersed into a side subpocket formed by the side chains of Asn520 and Glu522 and the backbone amide of Arg503, Gly504, Lys505 and Ile506. Hence, the 3-amino pyranoquinolinone 2c used as starting material to prepare derivatives of pyrano[3,2-c]quinolone containing 1,2,4-triazine ring 4a-b which will enhance the anti-cancer activity. Pyrano[3,2-c]quinoline-2,5-diones 2a-c and 4a-b were evaluated in vitro on cell lines Ehrlich Ascites carcinoma cells (EAC), liver cancer cell line Hep-G2 and breast cancer cell line MCF-7 for the development of novel anticancer agents. The screening results revealed that compounds 4a-b were found most active candidates as anticancer agents.
文摘The peroxisome proliferator activator receptor-<em>γ</em> (PPAR-<em>γ</em>) remained the most effective target for management of diabetes mellitus. The present work endeavors rational designing new PPAR-<em>γ</em> agonist bearing cyclotriphosphazene and thiazolidine-2,4-dione scaffolds. Thiazolidinedione (TZD) derivatives are the novel class of oral antidiabetic drugs which are selective agonist for the nuclear PPAR<em>γ</em> that enhances the transcription of several insulin responsive genes but TZDs are known to cause weight gain, hepatotoxicity and fluid retention. So, cyclotriphosphazene containing thiazolidine-2,4-dione was designed, synthesized as PPAR<em>γ</em> agonist. The <em>in-vitro</em> antidiabetic activity showed that compound <strong>8</strong> has similar activity and exhibited higher glucose uptake in comparison to pioglitazone as reference drugs. This research opened new avenues for smart designing of molecules with high efficiency towards the management of hyperglycemia.