In this paper,we study a mathematical model of Hepatitis C Virus(HCV)infection.We present a compartmental mathematical model involving healthy hepatocytes,infected hepatocytes,non-activated dendritic cells,activated d...In this paper,we study a mathematical model of Hepatitis C Virus(HCV)infection.We present a compartmental mathematical model involving healthy hepatocytes,infected hepatocytes,non-activated dendritic cells,activated dendritic cells and cytotoxic T lymphocytes.The derivative used is of non-local fractional order and with non-singular kernel.The existence and uniqueness of the system is proven and its stability is analyzed.Then,by applying the Laplace Adomian decomposition method for the fractional derivative,we present the semi-analytical solution of the model.Finally,some numerical simulations are performed for concrete values of the parameters and several graphs are plotted to reveal the qualitative properties of the solutions.展开更多
基金supported by the Agencia Estatal de Investigacin(AEI)of Spain,co-financed by the European Fund for Regional Development(FEDER)corresponding to the 2014-2020 multiyear financial framework,project PID2020-113275GB-I00Instituto de Salud Carlos II,grant COV20/00617Xunta de Galicia under grant ED431C 2019/02.
文摘In this paper,we study a mathematical model of Hepatitis C Virus(HCV)infection.We present a compartmental mathematical model involving healthy hepatocytes,infected hepatocytes,non-activated dendritic cells,activated dendritic cells and cytotoxic T lymphocytes.The derivative used is of non-local fractional order and with non-singular kernel.The existence and uniqueness of the system is proven and its stability is analyzed.Then,by applying the Laplace Adomian decomposition method for the fractional derivative,we present the semi-analytical solution of the model.Finally,some numerical simulations are performed for concrete values of the parameters and several graphs are plotted to reveal the qualitative properties of the solutions.