In this paper, we establish the existence and uniqueness of fixed points of operator , when n is an arbitrary positive integer and X is a partially ordered complete metric space. We have shown examples to verify our w...In this paper, we establish the existence and uniqueness of fixed points of operator , when n is an arbitrary positive integer and X is a partially ordered complete metric space. We have shown examples to verify our work. Our results generalize the recent fixed point theorems cited in [1]-[4] etc. and include several recent developments.展开更多
We establish fixed point theorems in complete fuzzy metric space by using notion of altering distance, initiated by Khan et al. [Bull. Austral. Math. Soc. 30 (1984), 1-9]. Also, we find an affirmative answer in fuzzy ...We establish fixed point theorems in complete fuzzy metric space by using notion of altering distance, initiated by Khan et al. [Bull. Austral. Math. Soc. 30 (1984), 1-9]. Also, we find an affirmative answer in fuzzy metric space to the problem of Sastry [TamkangJ. Math., 31(3) (2000), 243-250].展开更多
文摘In this paper, we establish the existence and uniqueness of fixed points of operator , when n is an arbitrary positive integer and X is a partially ordered complete metric space. We have shown examples to verify our work. Our results generalize the recent fixed point theorems cited in [1]-[4] etc. and include several recent developments.
文摘We establish fixed point theorems in complete fuzzy metric space by using notion of altering distance, initiated by Khan et al. [Bull. Austral. Math. Soc. 30 (1984), 1-9]. Also, we find an affirmative answer in fuzzy metric space to the problem of Sastry [TamkangJ. Math., 31(3) (2000), 243-250].