Purpose: To predict the diagnostic performance of combined use of T2-weighted imaging (T2W)-diffusion weighted MRI (DWI) and apparent diffusion coefficient (ADC)-proton MR spectroscopy (H-MRS) for the detection of pro...Purpose: To predict the diagnostic performance of combined use of T2-weighted imaging (T2W)-diffusion weighted MRI (DWI) and apparent diffusion coefficient (ADC)-proton MR spectroscopy (H-MRS) for the detection of prostate cancer, correlated to histopathology as the reference standard. Method: After institutional review board approval, 40 patients with prostate cancer were included in this retrospective research. Two readers evaluated the results of T2W, DWI-ADC mapping and H-MRS independently for the depiction of prostate cancer. Reference standard was the TRUS-guided biopsy and the surgical histopathological results. Statistical analysis was assessed by Fisher’s exact t-test, Wilcoxon signed rank test, variance analysis test with Kappa (k) values and receiver operating characteristics (ROC) curve for ADC values, Cho/Cit and Cho + Cre/Cit ratios for each observer. Results: Both readers declined 46% sensitivity and 68% specificity for T2W sequence, 29% sensitivity and 82% specificity for DWI-ADC mapping and 49% specificity for Cho/Cit and Cho + Cre/Cit ratios, 69% sensitivity for Cho/Cit 70% sensitivity for Cho + Cre/Cit ratios of H-MRS. T2W + DWI-ADC mapping + H-MRS (Cho/Cit and Cho + Cre/Cit ratios) regarded 81% sensitivity and 66% specificity, with significant statistical differences to the reference histopathology (p 0.05). Conclusion: Combination of T2W, DWI and H-MRS were more sensitive and more accurate than either sequences alone, for prostate cancer localization and detection.展开更多
文摘Purpose: To predict the diagnostic performance of combined use of T2-weighted imaging (T2W)-diffusion weighted MRI (DWI) and apparent diffusion coefficient (ADC)-proton MR spectroscopy (H-MRS) for the detection of prostate cancer, correlated to histopathology as the reference standard. Method: After institutional review board approval, 40 patients with prostate cancer were included in this retrospective research. Two readers evaluated the results of T2W, DWI-ADC mapping and H-MRS independently for the depiction of prostate cancer. Reference standard was the TRUS-guided biopsy and the surgical histopathological results. Statistical analysis was assessed by Fisher’s exact t-test, Wilcoxon signed rank test, variance analysis test with Kappa (k) values and receiver operating characteristics (ROC) curve for ADC values, Cho/Cit and Cho + Cre/Cit ratios for each observer. Results: Both readers declined 46% sensitivity and 68% specificity for T2W sequence, 29% sensitivity and 82% specificity for DWI-ADC mapping and 49% specificity for Cho/Cit and Cho + Cre/Cit ratios, 69% sensitivity for Cho/Cit 70% sensitivity for Cho + Cre/Cit ratios of H-MRS. T2W + DWI-ADC mapping + H-MRS (Cho/Cit and Cho + Cre/Cit ratios) regarded 81% sensitivity and 66% specificity, with significant statistical differences to the reference histopathology (p 0.05). Conclusion: Combination of T2W, DWI and H-MRS were more sensitive and more accurate than either sequences alone, for prostate cancer localization and detection.