期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Engineering of hollow polymeric nanosphere-supported imidazolium-based ionic liquids with enhanced antimicrobial activities 被引量:1
1
作者 Yu Zhang Shuwei Li +10 位作者 Yixin Xu Xinyun Shi Mingxin Zhang Yingning Huang Ying Liang Yaqiong Chen Wanli Ji Jung Rae kim Wenliang Song Deng-Guang Yu il kim 《Nano Research》 SCIE EI CSCD 2022年第6期5556-5568,共13页
The design of stable,efficient and processable bactericidal materials represents a significant challenge for combating multidrugresistant bacteria in a variety of engineering fields.Herein,we report a facile strategy ... The design of stable,efficient and processable bactericidal materials represents a significant challenge for combating multidrugresistant bacteria in a variety of engineering fields.Herein,we report a facile strategy for the preparation of hollow polymeric nanosphere(HPN)-supported imidazolium-based ionic liquids(denoted as HPN-ILs)with superior antimicrobial activities.HPNILs were tailored by moderate Friedel−Crafts polymerization followed by the sequential covalent bonding of imidazole and bromoalkene.The resultant HPN-ILs have uniform hollow spherical morphology,an adequate surface area,and excellent physicochemical stability.Furthermore,they are highly active against both Gram-positive and Gram-negative bacteria and exhibit typical time/dosage-dependent antibacterial activities.The rational combination of porous HPNs and antibacterial ILs to generate an all-in-one entity may open new avenues for the design and fabrication of efficient bacteriostatic agents.Moreover,HPN-ILs have good biocompatibility and can also be loaded onto diverse matrices,and thus could extend their practical bactericidal application in the potential biomedical-active field. 展开更多
关键词 antibacterial materials bioactive materials hollow nanospheres ionic liquids porous polymers
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部