It is shown that the non-equilibrium electrically neutral and relativistically invariant vacuum-like state with the negative energy density and positive pressure may exist at the non-zero temperature in the system of ...It is shown that the non-equilibrium electrically neutral and relativistically invariant vacuum-like state with the negative energy density and positive pressure may exist at the non-zero temperature in the system of spinor particles, antiparticles, and random electromagnetic field generated by particle-particle, particle-antiparticle, and antiparticle-antiparticle transitions. At the temperature of the order of 10 <sup>-5</sup> K, the energy density of its state corresponds to the dark energy density in absolute magnitude. The cosmological constant for such material medium turns out to be negative.展开更多
The model in which expansion of the Universe leads to a generation of non-equilibrium vacuum-like electron-positron plasma is proposed and researched. The formulas that relate the Hubble’s constant with the concentra...The model in which expansion of the Universe leads to a generation of non-equilibrium vacuum-like electron-positron plasma is proposed and researched. The formulas that relate the Hubble’s constant with the concentration of plasma particles and the cosmological constant are obtained. The collective properties of vacuum-like plasma are investigated. It is shown, that the coefficient of a two-photon annihilation in such plasma is nine times less than for the free particles. A simple formula for dark energy density as a function of electron mass and charge is obtained. It was demonstrated that acceleration of plasma’s chemical potential fluctuations flow proportional of dark energy density.展开更多
文摘It is shown that the non-equilibrium electrically neutral and relativistically invariant vacuum-like state with the negative energy density and positive pressure may exist at the non-zero temperature in the system of spinor particles, antiparticles, and random electromagnetic field generated by particle-particle, particle-antiparticle, and antiparticle-antiparticle transitions. At the temperature of the order of 10 <sup>-5</sup> K, the energy density of its state corresponds to the dark energy density in absolute magnitude. The cosmological constant for such material medium turns out to be negative.
文摘The model in which expansion of the Universe leads to a generation of non-equilibrium vacuum-like electron-positron plasma is proposed and researched. The formulas that relate the Hubble’s constant with the concentration of plasma particles and the cosmological constant are obtained. The collective properties of vacuum-like plasma are investigated. It is shown, that the coefficient of a two-photon annihilation in such plasma is nine times less than for the free particles. A simple formula for dark energy density as a function of electron mass and charge is obtained. It was demonstrated that acceleration of plasma’s chemical potential fluctuations flow proportional of dark energy density.