期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Improving tribological properties of CP-Ti by in-situ fabrication of Ti-WC surface composite using a pinless WC-Co stirring tool
1
作者 Meisam ASHOURI Reza TAGHIABADI +2 位作者 Mohammad EMAMI Morteza SAGHAFI YAZDI iman ansarian 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第10期3688-3702,共15页
A surface Ti-WC composite was fabricated on CP-Ti by surface friction stirring(SFS)using a pinless WC-Cotool at a processing window of 800−2500 r/min and 8−50 mm/min.At 1600 r/min-50 mm/min,a defect-free compositelaye... A surface Ti-WC composite was fabricated on CP-Ti by surface friction stirring(SFS)using a pinless WC-Cotool at a processing window of 800−2500 r/min and 8−50 mm/min.At 1600 r/min-50 mm/min,a defect-free compositelayer with an average hardness of~HV 1170 is formed.The hardness was increased by WC and TiN reinforcingparticles,dissolved Co atoms in Ti,and the formation of ultrafine grains.WC particles were incorporated into the Tisubstrate owing to the intense frictional interaction/heating at the tool-plate interface(~1000℃),which led to strengthloss and wear of the tool.The Williamson-Hall analysis of the XRD peaks of the SFSed sample confirmed a significantlysmall crystallite size(~100 nm).Wear tests showed that the wear resistance of the composite structure was about 4.5times higher than that of the CP-Ti.Friction analysis revealed a significant reduction in average value and fluctuations ofthe friction coefficient. 展开更多
关键词 surface friction stirring CP-Ti Ti-WC surface composite HARDNESS wear
下载PDF
Improvement of Surface Mechanical and Tribological Characteristics of L-PBF Processed Commercially Pure Titanium through Ultrasonic Impact Treatment
2
作者 iman ansarian Reza Taghiabadi +3 位作者 Saeid Amini Mohammad Hossein Mosallanejad Luca Iuliano Abdollah Saboori 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2024年第6期1034-1046,共13页
Multi-pass ultrasonic impact treatment(UIT)was applied to modify the microstructure and improve the mechanical and tribological characteristics at the near-surface region of commercially pure Ti(CP-Ti)specimens produc... Multi-pass ultrasonic impact treatment(UIT)was applied to modify the microstructure and improve the mechanical and tribological characteristics at the near-surface region of commercially pure Ti(CP-Ti)specimens produced by the laser powder bed fusion(L-PBF)method.UIT considerably refined the L-PBF process-related acicular martensites(α′-M)and produced a well-homogenized and dense surface microstructure,where the porosity content of 1-,3-,and 5-pass UITed samples was reduced by 43,60,and 67%,respectively.The UITed samples showed an enhancement in their near-surface mechanical properties up to a depth of about 300μm.The nanoindentation results for the 3-pass UITed sample revealed an increase of about 53,45,and 220%in its nanohardness,H/E_(r),and H_(3)/E_(r)^(2)indices,respectively.The stylus profilometry results showed that performing the UIT removed the L-PBF-related features/defects and offered a smooth surface.The roughness average(R_(a))and the skewness(R_(sk))of the 3-pass UITed sample were found to be lower than those of the L-PBFed sample by 95 and 223%,respectively.Applying the UIT also enhanced the material ratio,where the maximum load-bearing capacity(~100%)in as-L-PBFed(as-built)and 3-pass UITed samples was obtained at 60-and 10-µm depths,respectively.The tribological investigations showed that applying the UIT resulted in a significant reduction of wear rate and average coefficient of friction(COF)of CP-Ti.For instance,under the normal pressures of 0.05 and 0.2 MPa,the wear rate and COF of the 3-pass UITed sample were lower than those of the L-PBFed sample by 65 and 58%,and 20 and 17%,respectively. 展开更多
关键词 Laser powder bed fusion Ultrasonic impact treatment Commercially pure Ti(CP-Ti) Surface mechanical properties Tribological properties
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部