Friction stir welding (FSW) of aluminum alloys is currently utilized in several modern industries. The joints must have sufficient elastic?plastic response and formability levels similar to that of the base metal. In ...Friction stir welding (FSW) of aluminum alloys is currently utilized in several modern industries. The joints must have sufficient elastic?plastic response and formability levels similar to that of the base metal. In this work, double-sided FSW of AA6061 sheet was compared with its conventional single-sided one. An adjustable tool with different pin lengths (50%?95% of the sheet thickness) was used to perform the double-sided welds. Macro- and micro-structures, strength, and hardness of the joints were investigated to determine the optimum pin penetration depth. The best results were obtained for a double-sided joint made by a pin length equal to 65% of the sheet thickness, which showed an increase of 41% in the ultimate tensile strength compared with the single-sided joint.展开更多
The relationships between microhardness and microstructure, macrostructure and mechanical properties of friction stir welded joints AA6061-T913 were studied. Three equations were suggested to predict the grain size, u...The relationships between microhardness and microstructure, macrostructure and mechanical properties of friction stir welded joints AA6061-T913 were studied. Three equations were suggested to predict the grain size, ultimate tensile strength and yield strength from the hardness throughout the weld. Two-dimensional contour of grain size and three-dimensional maps of ultimate tensile and yield strengths were plotted according to the proposed equations. Also, the location of macroscopic zones was estimated based on hardness distribution. The modeling results were compared with the results obtained from microscopy and tensile tests. The modeling results show good agreement with the experimental findings, and the average differences between them for the ultimate tensile strength and yield strength were about 8% and 3%, respectively.展开更多
In this study, it is attempted to give an insight into the injection processability of three self-prepared polymers from A to Z. This work presents material analysis, injection molding simulation, design of ex- perime...In this study, it is attempted to give an insight into the injection processability of three self-prepared polymers from A to Z. This work presents material analysis, injection molding simulation, design of ex- periments alongside considering all interaction effects of controlling parameters carefully for green biodegradable polymeric systems, including polylactic acid (PLA), polylactic acid-thermoplastic poly- urethane (PLA-TPU) and polylactic acid-thermoplastic starch (PLA-TPS). The experiments were carried out using injection molding simulation software Autodesk Moldflov~~ in order to minimize warpage and volumetric shrinkage for each of the mentioned systems. The analysis was conducted by changing five significant processing parameters, including coolant temperature, packing time, packing pressure, mold temperature and melt temperature. Taguchi's [.27 (35) orthogonal array was selected as an efficient method for design of simulations in order to consider the interaction effects of the parameters and reduce spu- rious simulations. Meanwhile, artificial neural network (ANN) was also used for pattern recognition and optimization through modifying the processing conditions. The Taguchi coupled analysis of variance (ANOVA) and ANN analysis resulted in definition of optimum levels for each factor by two completely different methods. According to the results, melting temperature, coolant temperature and packing time had significant influence on the shrinkage and warpage. The ANN optimal level selection for minimiza- tion of shrinkage and/or warpage is in good agreement with ANOVA optimal level selection results. This investigation indicates that PLA-TPU compound exhibits the highest resistance to warpage and shrink- age defects compared to the other studied compounds.展开更多
基金The support of Iran National Science Foundation (INSF) (Grant No. 91051732)
文摘Friction stir welding (FSW) of aluminum alloys is currently utilized in several modern industries. The joints must have sufficient elastic?plastic response and formability levels similar to that of the base metal. In this work, double-sided FSW of AA6061 sheet was compared with its conventional single-sided one. An adjustable tool with different pin lengths (50%?95% of the sheet thickness) was used to perform the double-sided welds. Macro- and micro-structures, strength, and hardness of the joints were investigated to determine the optimum pin penetration depth. The best results were obtained for a double-sided joint made by a pin length equal to 65% of the sheet thickness, which showed an increase of 41% in the ultimate tensile strength compared with the single-sided joint.
基金The support of Iran National Science Foundation(INSF)(Grant No.91051732)
文摘The relationships between microhardness and microstructure, macrostructure and mechanical properties of friction stir welded joints AA6061-T913 were studied. Three equations were suggested to predict the grain size, ultimate tensile strength and yield strength from the hardness throughout the weld. Two-dimensional contour of grain size and three-dimensional maps of ultimate tensile and yield strengths were plotted according to the proposed equations. Also, the location of macroscopic zones was estimated based on hardness distribution. The modeling results were compared with the results obtained from microscopy and tensile tests. The modeling results show good agreement with the experimental findings, and the average differences between them for the ultimate tensile strength and yield strength were about 8% and 3%, respectively.
文摘In this study, it is attempted to give an insight into the injection processability of three self-prepared polymers from A to Z. This work presents material analysis, injection molding simulation, design of ex- periments alongside considering all interaction effects of controlling parameters carefully for green biodegradable polymeric systems, including polylactic acid (PLA), polylactic acid-thermoplastic poly- urethane (PLA-TPU) and polylactic acid-thermoplastic starch (PLA-TPS). The experiments were carried out using injection molding simulation software Autodesk Moldflov~~ in order to minimize warpage and volumetric shrinkage for each of the mentioned systems. The analysis was conducted by changing five significant processing parameters, including coolant temperature, packing time, packing pressure, mold temperature and melt temperature. Taguchi's [.27 (35) orthogonal array was selected as an efficient method for design of simulations in order to consider the interaction effects of the parameters and reduce spu- rious simulations. Meanwhile, artificial neural network (ANN) was also used for pattern recognition and optimization through modifying the processing conditions. The Taguchi coupled analysis of variance (ANOVA) and ANN analysis resulted in definition of optimum levels for each factor by two completely different methods. According to the results, melting temperature, coolant temperature and packing time had significant influence on the shrinkage and warpage. The ANN optimal level selection for minimiza- tion of shrinkage and/or warpage is in good agreement with ANOVA optimal level selection results. This investigation indicates that PLA-TPU compound exhibits the highest resistance to warpage and shrink- age defects compared to the other studied compounds.