The Internet of Vehicles(IoV)is a networking paradigm related to the intercommunication of vehicles using a network.In a dynamic network,one of the key challenges in IoV is traffic management under increasing vehicles...The Internet of Vehicles(IoV)is a networking paradigm related to the intercommunication of vehicles using a network.In a dynamic network,one of the key challenges in IoV is traffic management under increasing vehicles to avoid congestion.Therefore,optimal path selection to route traffic between the origin and destination is vital.This research proposed a realistic strategy to reduce traffic management service response time by enabling real-time content distribution in IoV systems using heterogeneous network access.Firstly,this work proposed a novel use of the Ant Colony Optimization(ACO)algorithm and formulated the path planning optimization problem as an Integer Linear Program(ILP).This integrates the future estimation metric to predict the future arrivals of the vehicles,searching the optimal routes.Considering the mobile nature of IOV,fuzzy logic is used for congestion level estimation along with the ACO to determine the optimal path.The model results indicate that the suggested scheme outperforms the existing state-of-the-art methods by identifying the shortest and most cost-effective path.Thus,this work strongly supports its use in applications having stringent Quality of Service(QoS)requirements for the vehicles.展开更多
基金supported by“Human Resources Program in Energy Technology”of the Korea Institute of Energy Technology Evaluation and Planning(KETEP),granted financial resources from the Ministry of Trade,Industry&Energy,Republic of Korea.(No.20204010600090).
文摘The Internet of Vehicles(IoV)is a networking paradigm related to the intercommunication of vehicles using a network.In a dynamic network,one of the key challenges in IoV is traffic management under increasing vehicles to avoid congestion.Therefore,optimal path selection to route traffic between the origin and destination is vital.This research proposed a realistic strategy to reduce traffic management service response time by enabling real-time content distribution in IoV systems using heterogeneous network access.Firstly,this work proposed a novel use of the Ant Colony Optimization(ACO)algorithm and formulated the path planning optimization problem as an Integer Linear Program(ILP).This integrates the future estimation metric to predict the future arrivals of the vehicles,searching the optimal routes.Considering the mobile nature of IOV,fuzzy logic is used for congestion level estimation along with the ACO to determine the optimal path.The model results indicate that the suggested scheme outperforms the existing state-of-the-art methods by identifying the shortest and most cost-effective path.Thus,this work strongly supports its use in applications having stringent Quality of Service(QoS)requirements for the vehicles.