Transition metal phosphides(TMPs)and transition metal dichalcogenides(TMDs)have been widely investigated as photoelectrochemical(PEC)catalysts for hydrogen evolution reaction(HER).Using high-temperature processes to g...Transition metal phosphides(TMPs)and transition metal dichalcogenides(TMDs)have been widely investigated as photoelectrochemical(PEC)catalysts for hydrogen evolution reaction(HER).Using high-temperature processes to get crystallized compounds with large-area uniformity,it is still challenging to directly synthesize these catalysts on silicon photocathodes due to chemical incompatibility at the heterointerface.Here,a graphene interlayer is applied between p-Si and MoP nanorods to enable fully engineered interfaces without forming a metallic secondary compound that absorbs a parasitic light and provides an inefficient electron path for hydrogen evolution.Furthermore,the graphene facilitates the photogenerated electrons to rapidly transfer by creating Mo-O-C covalent bondings and energetically favorable band bending.With a bridging role of graphene,numerous active sites and anti-reflectance of MoP nanorods lead to significantly improved PEC-HER performance with a high photocurrent density of 21.8 mA cm−2 at 0 V versus RHE and high stability.Besides,low dependence on pH and temperature is observed with MoP nanorods incorporated photocathodes,which is desirable for practical use as a part of PEC cells.These results indicate that the direct synthesis of TMPs and TMDs enabled by graphene interlayer is a new promising way to fabricate Si-based photocathodes with high-quality interfaces and superior HER performance.展开更多
基金financially supported by the Basic Science Research Program(2017R1A2B3009135)the Korean government MSIT(2019M3E6A1103818)+2 种基金the Basic Research Laboratory Program(2018R1A4A1022647)the Future Material Discovery Program(2018M3D1A1058793)through the National Research Foundation of KoreaKOREA HYDRO&NUCLEAR POWER CO.,LTD.(No.2018-Tech-21)。
文摘Transition metal phosphides(TMPs)and transition metal dichalcogenides(TMDs)have been widely investigated as photoelectrochemical(PEC)catalysts for hydrogen evolution reaction(HER).Using high-temperature processes to get crystallized compounds with large-area uniformity,it is still challenging to directly synthesize these catalysts on silicon photocathodes due to chemical incompatibility at the heterointerface.Here,a graphene interlayer is applied between p-Si and MoP nanorods to enable fully engineered interfaces without forming a metallic secondary compound that absorbs a parasitic light and provides an inefficient electron path for hydrogen evolution.Furthermore,the graphene facilitates the photogenerated electrons to rapidly transfer by creating Mo-O-C covalent bondings and energetically favorable band bending.With a bridging role of graphene,numerous active sites and anti-reflectance of MoP nanorods lead to significantly improved PEC-HER performance with a high photocurrent density of 21.8 mA cm−2 at 0 V versus RHE and high stability.Besides,low dependence on pH and temperature is observed with MoP nanorods incorporated photocathodes,which is desirable for practical use as a part of PEC cells.These results indicate that the direct synthesis of TMPs and TMDs enabled by graphene interlayer is a new promising way to fabricate Si-based photocathodes with high-quality interfaces and superior HER performance.