期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Regulation of cell locomotion by nanosecond-laser-induced hydroxyapatite patterning 被引量:2
1
作者 Seung-Hoon Um Jaehong Lee +5 位作者 in-seok song Myoung-Ryul Ok Yu-Chan Kim Hyung-Seop Han Sang-Hoon Rhee Hojeong Jeon 《Bioactive Materials》 SCIE 2021年第10期3608-3619,共12页
Hydroxyapatite,an essential mineral in human bones composed mainly of calcium and phosphorus,is widely used to coat bone graft and implant surfaces for enhanced biocompatibility and bone formation.For a strong implant... Hydroxyapatite,an essential mineral in human bones composed mainly of calcium and phosphorus,is widely used to coat bone graft and implant surfaces for enhanced biocompatibility and bone formation.For a strong implant-bone bond,the bone-forming cells must not only adhere to the implant surface but also move to the surface requiring bone formation.However,strong adhesion tends to inhibit cell migration on the surface of hydroxyapatite.Herein,a cell migration highway pattern that can promote cell migration was prepared using a nanosecond laser on hydroxyapatite coating.The developed surface promoted bone-forming cell movement compared with the unpatterned hydroxyapatite surface,and the cell adhesion and movement speed could be controlled by adjusting the pattern width.Live-cell microscopy,cell tracking,and serum protein analysis revealed the fundamental principle of this phenomenon.These findings are applicable to hydroxyapatite-coated biomaterials and can be implemented easily by laser patterning without complicated processes.The cell migration highway can promote and control cell movement while maintaining the existing advantages of hydroxyapatite coatings.Furthermore,it can be applied to the surface treatment of not only implant materials directly bonded to bone but also various implanted biomaterials implanted that require cell movement control. 展开更多
关键词 Nanosecond laser Laser engraving Hydroxyapatite patterning Cell migration control Cell tracking
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部