Low survival rate occurs in patients who initially experience a spontaneous return of circulation after cardiac arrest(CA). In this study, we induced asphyxial CA in adult male Sprague-Daley rats, maintained their b...Low survival rate occurs in patients who initially experience a spontaneous return of circulation after cardiac arrest(CA). In this study, we induced asphyxial CA in adult male Sprague-Daley rats, maintained their body temperature at 37 ± 0.5°C, and then observed the survival rate during the post-resuscitation phase. We examined neuronal damage in the hippocampus using cresyl violet(CV) and Fluore-Jade B(F-J B) staining, and pro-inflammatory response using ionized calcium-binding adapter molecule 1(Iba-1), glial fibrillary acidic protein(GFAP), and tumor necrosis factor-alpha(TNF-α) immunohistochemistry in the hippocampus after asphyxial CA in rats under normothermia. Our results show that the survival rate decreased gradually post-CA(about 63% at 6 hours, 37% at 1 day, and 8% at 2 days post-CA). Rats were sacrificed at these points in time post-CA, and no neuronal damage was found in the hippocampus until 1 day post-CA. However, some neurons in the stratum pyramidale of the CA region in the hippocampus were dead 2 days post-CA. Iba-1 immunoreactive microglia in the CA1 region did not change until 1 day postCA, and they were activated(enlarged cell bodies with short and thicken processes) in all layers 2 days postCA. Meanwhile, GFAP-immunoreactive astrocytes did not change significantly until 2 days post-CA. TNF-α immunoreactivity decreased significantly in neurons of the stratum pyramidale in the CA1 region 6 hours post-CA, decreased gradually until 1 day post-CA, and increased significantly again 2 days post-CA. These findings suggest that low survival rate of normothermic rats in the early period of asphyxia-induced CA is related to increased TNF-α immunoreactivity, but not to neuronal damage in the hippocampal CA1 region.展开更多
基金supported by the Basic Science Research Program through the National Research Foundation of Korea(NRF)the Ministry of Education(NRF-2014R1A1A2057263)+2 种基金by the Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Science,ICT&Future Planning(NRF-2017R1A2B4009079&NRF-2017R1A2B4008403)by the Bio-Synergy Research Project(NRF-2015M3A9C4076322)of the Ministry of ScienceICT and Future Planning through the National Research Foundation
文摘Low survival rate occurs in patients who initially experience a spontaneous return of circulation after cardiac arrest(CA). In this study, we induced asphyxial CA in adult male Sprague-Daley rats, maintained their body temperature at 37 ± 0.5°C, and then observed the survival rate during the post-resuscitation phase. We examined neuronal damage in the hippocampus using cresyl violet(CV) and Fluore-Jade B(F-J B) staining, and pro-inflammatory response using ionized calcium-binding adapter molecule 1(Iba-1), glial fibrillary acidic protein(GFAP), and tumor necrosis factor-alpha(TNF-α) immunohistochemistry in the hippocampus after asphyxial CA in rats under normothermia. Our results show that the survival rate decreased gradually post-CA(about 63% at 6 hours, 37% at 1 day, and 8% at 2 days post-CA). Rats were sacrificed at these points in time post-CA, and no neuronal damage was found in the hippocampus until 1 day post-CA. However, some neurons in the stratum pyramidale of the CA region in the hippocampus were dead 2 days post-CA. Iba-1 immunoreactive microglia in the CA1 region did not change until 1 day postCA, and they were activated(enlarged cell bodies with short and thicken processes) in all layers 2 days postCA. Meanwhile, GFAP-immunoreactive astrocytes did not change significantly until 2 days post-CA. TNF-α immunoreactivity decreased significantly in neurons of the stratum pyramidale in the CA1 region 6 hours post-CA, decreased gradually until 1 day post-CA, and increased significantly again 2 days post-CA. These findings suggest that low survival rate of normothermic rats in the early period of asphyxia-induced CA is related to increased TNF-α immunoreactivity, but not to neuronal damage in the hippocampal CA1 region.