期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
On the Geometry of the Anti-canonical Bundle of the Bott–Samelson–Demazure–Hansen Varieties
1
作者 indranil biswas S.Senthamarai KANNAN Pinakinath SAHA 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2024年第8期1920-1940,共21页
Let G be a semi-simple simply connected algebraic group over the field C of complex numbers.Let T be a maximal torus of G,and let W be the Weyl group of G with respect to T.Let Z(w,i)be the Bott–Samelson–Demazure–H... Let G be a semi-simple simply connected algebraic group over the field C of complex numbers.Let T be a maximal torus of G,and let W be the Weyl group of G with respect to T.Let Z(w,i)be the Bott–Samelson–Demazure–Hansen variety corresponding to a tuple i associated to a reduced expression of an element w∈W.We prove that for the tuple i associated to any reduced expression of a minuscule Weyl group element w,the anti-canonical line bundle on Z(w,i)is globally generated.As consequence,we prove that Z(w,i)is weak Fano.Assume that G is a simple algebraic group whose type is different from A2.Let S={α1,...,αn}be the set of simple roots.Let w be such that support of w is equal to S.We prove that Z(w,i)is Fano for the tuple i associated to any reduced expression of w if and only if w is a Coxeter element and w^(−1)(Σ_(t=1)^(n)α_(t))∈−S. 展开更多
关键词 Bott-Samelson-Demazure-Hansen variety Coxeter element anti-canonical line bundle Fano weak Fano
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部